172 (number)
172 (one hundred [and] seventy-two) is the natural number following 171 and preceding 173.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred seventy-two | |||
Ordinal | 172nd (one hundred seventy-second) | |||
Factorization | 22 × 43 | |||
Divisors | 1, 2, 4, 43, 86, 172 | |||
Greek numeral | ΡΟΒ´ | |||
Roman numeral | CLXXII | |||
Binary | 101011002 | |||
Ternary | 201013 | |||
Octal | 2548 | |||
Duodecimal | 12412 | |||
Hexadecimal | AC16 |
In mathematics
172 is an even number, a composite number and a deficient number. It is also a 30-gonal number.[1]
172 is a noncototient integer,[2] as well as the sum of Euler's totient function φ(x) over the first twenty-three integers. 172 is also a member of the Lazy Caterer's Sequence.[3]
172 is a repdigit in base 6 (444), as well as in bases 42, 85, and 171.
In the military
- 172d Airlift Wing airlift of the United States Air National Guard at Jackson-Evers International Airport
- 172nd Battalion (Rocky Mountain Rangers), CEF unit of the Canadian Expeditionary Force during World War I
- 172nd Fighter Squadron unit of the Michigan Air National Guard
- 172nd Infantry Brigade of the United States Army at Grafenwöhr, Germany
- USNS Apache (T-ATF-172) is a United States Navy Powhatan-class tugboat
- USNS Phoenix (T-AG-172) was a United States Navy Phoenix-class miscellaneous auxiliary ship following World War II
- USS Anthony (DD-172) was a United States Navy Wickes-class destroyer following World War I
- USS Cape Johnson (AP-172) was a United States Navy troop transport ship during World War II
- USS Clarion (AK-172) was a United States Navy Alamosa-class cargo ship in World War II
- USS Cooner (DE-172) was a United States Navy Cannon-class destroyer escort ship during World War II
- USS Grimes (APA-172) was a United States Navy Haskell-class attack transport during World War II
- USS Porpoise (SS-172) was a United States Navy Porpoise-class diesel-electric submarine during World War II
In transportation
- British Rail Class 172
- The London Buses headquarters at 172 Buckingham Palace Road
- The East 172nd Avenue light rail station on the MAX Blue Line in Gresham, Oregon
- The Cessna 172 Skyhawk 4-seat, single-engine aircraft. More Cessna 172s were built than any other aircraft
In other fields
172 is also:
- The year AD 172 or 172 BC
- The atomic number of an element temporarily called Unseptbium
- 172 Baucis is a large S-type Main belt asteroid
See also
External links
Wikimedia Commons has media related to 172 (number). |
References
- "Sloane's A254474 : 30-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-26.
- "Sloane's A005278 : Noncototients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-26.
- "Sloane's A000124 : Central polygonal numbers (the Lazy Caterer's sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-26.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.