148 (number)
148 (one hundred [and] forty-eight) is the natural number following 147 and before 149.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred forty-eight | |||
Ordinal | 148th (one hundred forty-eighth) | |||
Factorization | 22 × 37 | |||
Divisors | 1, 2, 4, 37, 74, 148 | |||
Greek numeral | ΡΜΗ´ | |||
Roman numeral | CXLVIII | |||
Binary | 100101002 | |||
Ternary | 121113 | |||
Octal | 2248 | |||
Duodecimal | 10412 | |||
Hexadecimal | 9416 |
In mathematics
- 148 is the second number to be both a heptagonal number[1] and a centered heptagonal number[2] (the first is 1)
- 148 is the twelfth member of the Mian–Chowla sequence[3]
- There are 148 perfect graphs with 6 vertices
In the Bible
- The number of singers, sons of Asaph, at the Census of men of Israel upon return from exile, (Book of Nehemiah 7:44)
- Psalm 148
In the military
- The AN/PRC-148 Multiband Inter/Intra Team Radio fielded handheld multiband, tactical software-defined radio
- The CH-148 Cyclone twin-engine helicopter manufactured by the Sikorsky Aircraft Corporation for the Canadian Forces
- USS Achomawi (ATF-148) was a United States Navy Navajo-class fleet ocean tug during World War II
- USS Astute (AM-148) was a United States Navy Admirable-class minesweeper during World War II
- USS Breckinridge (DD-148) was a United States Navy Wickes-class destroyer during World War II
- USS Brough (DE-148) was a United States Navy Edsall-class destroyer escort during World War II
- USS Crockett (APA-148) was a United States Navy Haskell-class attack transport during World War II
- USS General M. L. Hersey (AP-148) was a United States Navy General G. O. Squier-class transport ship during World War II
- USS Newport News (CA-148) was a United States Navy Des Moines-class cruiser following World War II
- USS Ponchatoula (AO-148) was a United States Navy Neosho-class fleet oiler during the Vietnam War
In transportation
- London Buses route 148
- Harlem – 148th Street station on the IRT Lenox Avenue Line of the New York City Subway
- The East 148th Avenue light rail station on the MAX Blue Line in Portland, Oregon
- The Antonov An-148 Ukrainian jet aircraft
- Air Inter Flight 148 crashed in the Vosges Mountains on January 20, 1992
- The Piaggio P.148 was an Italian 2-seat primary or aerobatic training monoplane built by Piaggio
In TV and radio
- Cobra 148 model Globalstar Telecommunications Limited (GTL) 120 channel CB radio
In other fields
- The year AD 148 or 148 BC
- 148 AH is a year in the Islamic calendar that corresponds to a period in 765 CE
- The atomic number of an element temporarily called unquadioctium
- 148 Gallia is a R-type main belt asteroid
- Blood 148 Indian reserve in Alberta, Canada
- Sonnet 148
- Dunbar's number, theoretical cognitive limit to the number of people with whom one can maintain stable social relationships
See also
References
- "Sloane's A000566 : Heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.