161 (number)
161 (one hundred [and] sixty-one) is the natural number following 160 and preceding 162.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred sixty-one | |||
Ordinal | 161st (one hundred sixty-first) | |||
Factorization | 7 × 23 | |||
Divisors | 1, 7, 23, 161 | |||
Greek numeral | ΡΞΑ´ | |||
Roman numeral | CLXI | |||
Binary | 101000012 | |||
Ternary | 122223 | |||
Octal | 2418 | |||
Duodecimal | 11512 | |||
Hexadecimal | A116 |
In mathematics
- 161 is the sum of five consecutive prime numbers: 23, 29, 31, 37, and 41
- 161 is a hexagonal pyramidal number.[1]
- 161 is a semiprime. Since its prime factors 7 and 23 are both Gaussian primes, 161 is a Blum integer.
- 161 is a palindromic number [2]
In the military
- USNS Lone Jack (T-AO-161) was a U.S. Navy Type T2 tanker during World War II
- USS Barber (DE-161) was a U.S. Navy Buckley-class destroyer escort during World War II
- USS Barite (IX-161) was a U.S. Navy Trefoil-class concrete barge during World War II
- USS Beaverhead (AK-161) was a U.S. Navy Alamosa-class cargo ship during World War II
- USS Climax (AM-161) was a U.S. Navy Admirable-class minesweeper during World War II
- USS Dickens (APA-161) was a U.S. Navy Haskell-class attack transport during World War II
- USS Narada (SP-161) was a U.S. Navy wooden yacht during World War I
- USS Palmer (DD-161) was a U.S. Navy Wickes-class destroyer during World War II
- USS Salinan (ATF-161) was a U.S. Navy Achomawi-class fleet ocean tug following World War II
- USS S-50 (SS-161) was a U.S. Navy fourth-group S-class submarine between 1920 and 1931
- USS Stingray (SS-161) is a fictional U.S. Navy diesel engine submarine featured in the 1996 film Down Periscope
- The 161st Intelligence Squadron unit of the Kansas Air National Guard. Its parent unit is the 184th Intelligence Wing
In music
- The Bose 161 Speaker System (2001)
- The Kay K-161 ThinTwin guitar
In transportation
- MTA Maryland commuter bus 161
- Seattle Metro bus route 161
- New Jersey Bus Route 161
- London Bus route 161
In other fields
161 is also:
- The year AD 161 or 161 BC
- 161 AH is a year in the Islamic calendar that corresponds to 777 – 778 CE
- The atomic number of an element temporarily called Unhexunium
- 161 Athor is an M-type Main belt asteroid
- E.161 is an ITU-T assigns letters to the 12-key telephone keypad
- Fiorina Fury 161 is a foundry facility and penal colony from the film Alien 3
- 161 is used by Anti Fascist Action as a code for AFA (A=1, F=6, by order of the alphabet), sometimes used in 161>88[3] (88 is code for Heil Hitler among neo-nazis, as H=8)
See also
External links
Wikimedia Commons has media related to 161 (number). |
References
- "Sloane's A002412 : Hexagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- https://oeis.org/A002113
- "161>88". Czech Republic: Antifascist Action. 2012. Archived from the original (Documentary) on 3 January 2018. Retrieved 2 January 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.