Solar eclipse of April 8, 1959
An annular solar eclipse occurred on April 8, 1959. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, southeastern tip of Milne Bay Province in the Territory of Papua New Guinea (today's Papua New Guinea), British Solomon Islands (today's Solomon Islands), Gilbert and Ellice Islands (the part now belonging to Tuvalu), Tokelau, and Swains Island in American Samoa.
Solar eclipse of April 8, 1959 | |
---|---|
Map | |
Type of eclipse | |
Nature | Annular |
Gamma | -0.4546 |
Magnitude | 0.9401 |
Maximum eclipse | |
Duration | 446 sec (7 m 26 s) |
Coordinates | 19.1°S 137.6°E |
Max. width of band | 247 km (153 mi) |
Times (UTC) | |
Greatest eclipse | 3:24:08 |
References | |
Saros | 138 (28 of 70) |
Catalog # (SE5000) | 9418 |
Related eclipses
Solar eclipses of 1957–1960
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Solar eclipse series sets from 1957–1960 | ||||
---|---|---|---|---|
Descending node | Ascending node | |||
Saros | Map | Saros | Map | |
118 | 1957 April 30 Annular (non-central) |
123 | 1957 October 23 Total (non-central) | |
128 | 1958 April 19 Annular |
133 | 1958 October 12 Total | |
138 | 1959 April 8 Annular |
143 | 1959 October 2 Total | |
148 | 1960 March 27 Partial |
153 | 1960 September 20 Partial |
Saros 138
It is a part of Saros cycle 138, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on June 6, 1472. It contains annular eclipses from August 31, 1598 through February 18, 2482 with a hybrid eclipse on March 1, 2500. It has total eclipses from March 12, 2518 through April 3, 2554. The series ends at member 70 as a partial eclipse on July 11, 2716. The longest duration of totality will be only 56 seconds on April 3, 2554.
Series members 25–35 occur between 1901 and 2100: | ||
---|---|---|
25 | 26 | 27 |
March 6, 1905 |
March 17, 1923 |
March 27, 1941 |
28 | 29 | 30 |
April 8, 1959 |
April 18, 1977 |
April 29, 1995 |
31 | 32 | 33 |
May 10, 2013 |
May 21, 2031 |
May 31, 2049 |
34 | 35 | |
June 11, 2067 |
June 22, 2085 |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1901 and 2100 | |||
---|---|---|---|
September 9, 1904 (Saros 133) |
August 10, 1915 (Saros 134) |
July 9, 1926 (Saros 135) | |
June 8, 1937 (Saros 136) |
May 9, 1948 (Saros 137) |
April 8, 1959 (Saros 138) | |
March 7, 1970 (Saros 139) |
February 4, 1981 (Saros 140) |
January 4, 1992 (Saros 141) | |
December 4, 2002 (Saros 142) |
November 3, 2013 (Saros 143) |
October 2, 2024 (Saros 144) | |
September 2, 2035 (Saros 145) |
August 2, 2046 (Saros 146) |
July 1, 2057 (Saros 147) | |
May 31, 2068 (Saros 148) |
May 1, 2079 (Saros 149) |
March 31, 2090 (Saros 150) |
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Inex series members between 1901 and 2100: | ||
---|---|---|
May 18, 1901 (Saros 136) |
April 28, 1930 (Saros 137) |
April 8, 1959 (Saros 138) |
March 18, 1988 (Saros 139) |
February 26, 2017 (Saros 140) |
February 5, 2046 (Saros 141) |
January 16, 2075 (Saros 142) |
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).
22 eclipse events, progressing from north to south between April 8, 1902 and August 31, 1989: | ||||
---|---|---|---|---|
April 7–8 | January 24–25 | November 12 | August 31-September 1 | June 19–20 |
108 | 114 | 116 | ||
April 8, 1902 |
August 31, 1913 |
June 19, 1917 | ||
118 | 120 | 122 | 124 | 126 |
April 8, 1921 |
January 24, 1925 |
November 12, 1928 |
August 31, 1932 |
June 19, 1936 |
128 | 130 | 132 | 134 | 136 |
April 7, 1940 |
January 25, 1944 |
November 12, 1947 |
September 1, 1951 |
June 20, 1955 |
138 | 140 | 142 | 144 | 146 |
April 8, 1959 |
January 25, 1963 |
November 12, 1966 |
August 31, 1970 |
June 20, 1974 |
148 | 150 | 152 | 154 | |
April 7, 1978 |
January 25, 1982 |
November 12, 1985 |
August 31, 1989 |
Notes
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
References
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC