2021 in paleontology

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2021.

Fields
  • Computing
Extraterrestrial environment
Terrestrial environment
Other/related
List of years in paleontology (table)
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In insect paleontology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In archosaur paleontology
2018
2019
2020
2021
2022
2023
2024
In mammal paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoichthyology
2018
2019
2020
2021
2022
2023
2024

Flora

Ericales
Name Novelty Status Authors Age Type locality Location Notes Images

Mecsekispermum[2]

Gen. et sp. nov

In press

Hably & Erdei

Miocene (Burdigalian)

Feked Formation

 Hungary

Possibly a member of the family Theaceae. Genus includes new species M. gordonioides.

Fabales
Name Novelty Status Authors Age Type locality Location Notes Images

Leguminocarpum olmensis[3]

Sp. nov

Valid

Centeno-González et al.

Late Cretaceous (Campanian)

Olmos Formation

 Mexico

A member of the family Fabaceae.

Gentianales
Name Novelty Status Authors Age Type locality Location Notes Images

Adina vastanenesis[4]

Sp. nov

In press

Shukla et al.

Early Eocene

Cambay Shale Formation

 India

A species of Adina.

Malvales
Name Novelty Status Authors Age Type locality Location Notes Images

Craigia lincangensis[5]

Sp. nov

In press

Wang & Xie in Wang et al.

Late Miocene

 China

A species of Craigia

Tilia asiatica[6]

Sp. nov

In press

Jia & Nam in Jia et al.

Middle Miocene

Pohang Basin

 South Korea

A species of Tilia

Sapindales
Name Novelty Status Authors Age Type locality Location Notes Images

Atalantioxylon thanobolensis[7]

Sp. nov

Valid

Soomro et al.

Miocene

Manchar Formation

 Pakistan

Fossil wood of a member of the family Rutaceae.

Zingiberales
Name Novelty Status Authors Age Type locality Location Notes Images

Orthogonospermum[8]

Gen. et sp. nov

In press

Smith et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of the family Zingiberaceae. Genus includes new species O. patanense.

Other angiosperms
Name Novelty Status Authors Age Type locality Location Notes Images

Nigericolpites[9]

Nom. nov

In press

Hernández

Late Cretaceous (Maastrichtian)

 Nigeria

Pollen of a flowering plant; a replacement name for Clavatricolpites Hoeken-Klinkenberg (1964).

Pinales

Name Novelty Status Authors Age Type locality Location Notes Images

Podocarpus yunnanensis[10]

Sp. nov

In press

Wu et al.

Early Pliocene

 China

A species of Podocarpus.

Other plants

Name Novelty Status Authors Age Type locality Location Notes Images

Caulopteris ellipticus[11]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

Caulopteris neimengensis[11]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

Iberisetum[12]

Gen. et sp. nov

In press

Wang, Šimůnek & Sá

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A member of Equisetales. Genus includes new species I. wegeneri.

Mesochara dobrogeica[13]

Sp. nov

In press

Sanjuan et al.

Early Cretaceous (Berriasian)

 Romania

A member of Charophyta.

Nemejcopteris haiwangii[14]

Sp. nov

In press

Pšenička et al.

Early Permian

 China

A zygopterid fern.

Omniastrobus[15]

Gen. et sp. nov

In press

Bonacorsi et al.

Devonian (Emsian)

Campbellton Formation

 Canada

A lycophyte. Genus includes new species O. dawsonii.

Tapelrayen[16]

Gen. et sp. nov

In press

Machado et al.

Eocene

Huitrera Formation

 Argentina

Fertile remains of a fern comparable with Thelypteridaceae and Dryopteridaceae. Genus includes new species T. helgae.

Research

  • Taxonomically diverse flora from the Seafood Salad locality, found ~65 m below the Cretaceous-Paleogene boundary in the Hell Creek Formation (Montana, United States), is described by Wilson, Wilson Mantilla & Strӧmberg (2021), who study the affinities of plants of this locality and compare them with other Late Cretaceous floras of the Western Interior.[17]
  • A study on the timing of the origin of the flowering plants, based on data from fossil record and from the diversity of extant members of this group, is published by Silvestro et al. (2021), who interpret their findings as indicating that several flowering plant families originated in the Jurassic.[18]
  • A study on the fossil pollen record from New Zealand, dating from 100 million years ago to the present, is published by Prebble et al. (2021), who report evidence indicating that Cretaceous diversification was closely followed by an increase in flowering plants frequency, but their maximum frequency did not occur until the Eocene.[19]

Cnidarians

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Palaeodiphasia[20]

Gen et comb. nov

Valid

Song et al.

Late Cambrian

Fengshan Formation

 China

A member of Leptothecata belonging to the group Macrocolonia; a new genus for "Siberiograptus" simplex Lin (1985).

Research

  • An exceptionally preserved conulariid specimen, keeping its aperture semi-closed and making it possible to see most of the internal part of the closure with rib continuation inwards, is described from the Ordovician of southeastern Brandenburg (Germany) by Sendino & Bochmann (2021).[21]

Arthropods

Arachnids

Name Novelty Status Authors Age Type locality Location Notes Images

Dolichocybe elongata[22]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Dolichocybidae.

Hoplocheylus similis[22]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Tarsocheylidae.

Paradactylidium sineunguis[22]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Acarophenacidae.

Priscaleclercera christae[23]

Sp. nov

In press

Magalhaes et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A spider belonging to the family Psilodercidae.

Proadactylidium fossibilis[22]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Acarophenacidae.

Malacostracans
Name Novelty Status Authors Age Type locality Country Notes Images

Aptanacalliax[24]

Gen. et sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea belonging to the family Anacalliacidae. Genus includes new species A. enigma.

Aptaxiopsis[24]

Gen. et sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea. Genus includes new species A. longimanus.

Bavaricaris[25]

Gen. et sp. nov

Valid

Winkler

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Caridea, possibly belonging to the family Palaemonidae. The type species is B. haereri.

Blaculla anjobea[25]

Sp. nov

Valid

Winkler

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Caridea.

Cretacocalcinus[24]

Gen. et sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A hermit crab. Genus includes new species C. josaensis.

Crosniera forcallensis[24]

Sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea belonging to the family Callianideidae.

Harthofia heidenreichetfauseri[25]

Sp. nov

Valid

Winkler

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Caridea.

Meticonaxius gracilis[24]

Sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea.

Nahecaris sabineae[26]

Sp. nov

In press

Poschmann

Devonian (Emsian)

 Germany

A member of Phyllocarida.

Stenodactylina shotoverigiganti[27]

Sp. nov

Valid

Devillez & Charbonnier

Late Jurassic (Oxfordian)

 United Kingdom

A member of Erymoidea.

Ostracods
Name Novelty Status Authors Age Type locality Country Notes Images

Aracajuia separatta[28]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Bythoceratina antetumida[29]

Nom. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Candona dawenkouensis[30]

Sp. nov

In press

Wang et al.

Middle Eocene to Oligocene

Dawenkou Formation

 China

A species of Candona.

Cytheropteron laranjeirensis[28]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Idiocythere caburnensis[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Isocythereis postelongata[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Karsteneis oculocosta[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Mauritsina? paradordoniensis[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Microxestoleberis riachuelensis[28]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Monoceratina minangulata[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Parahemingwayela fauthi[28]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Patellacythere weaveri[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Pleurocythere khapissovi[31]

Sp. nov

Valid

Glinskikh & Tesakova

Middle Jurassic (Callovian)

 Russia

Pterygocythereis carolinae[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Quasihermanites? punctata[28]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Rehacythereis stellatus[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Schuleridea langdonensis[29]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Research

Insects

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Ehmaniella tupeqarfik[33]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Telt Bugt Formation

 Greenland

A member of the family Alokistocaridae.

Fieldaspis? iubilaei[33]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Telt Bugt Formation

 Greenland

A member of the family Zacanthoididae.

Research

  • A study on the morphology of Redlichia rex and Olenoides serratus, aiming to determine whether these trilobites were adapted for durophagy, is published by Bicknell et al. (2021).[34]
  • A study on the long-term evolutionary history of Devonian trilobites in North Africa is published by Bault et al. (2021).[35]

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Myrmecodesmus antiquus[36]

Sp. nov

Valid

Riquelme & Hernández-Patricio in Riquelme, Hernández-Patricio & Álvarez-Rodríguez

Miocene

Mexican amber

 Mexico

A millipede belonging to the family Pyrgodesmidae.

Research

  • A fossil larva lacking segmentation of the carapace, closely resembling the trilobite protaspis, is described from the Ordovician (Darriwilian) of central Siberia by Dzik (2021), found associated with other skeletal elements of the angarocaridid Girardevia.[37]

Brachiopods

Name Novelty Status Authors Age Type locality Location Notes Images

Carinagypa robecki[38]

Sp. nov

Valid

Blodgett et al.

Devonian (Emsian)

 United States
( Alaska)

A member of Pentamerida belonging to the family Gypidulidae.

Molluscs

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arcestes lawsi[39]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
( Nevada)

Arnioceras ritterbushi[40]

Sp. nov

Valid

Taylor & Guex

Early Jurassic (Sinemurian)

Sunrise Formation

 United States
( Nevada)

Arnioceras sparsum[40]

Sp. nov

Valid

Taylor & Guex

Early Jurassic (Sinemurian)

Sunrise Formation

 United States
( Nevada)

Boucaulticeras hawthornensis[40]

Sp. nov

Valid

Taylor & Guex

Early Jurassic (Sinemurian)

Sunrise Formation

 United States
( Nevada)

A member of the family Schlotheimiidae.

Discoscaphites mullinaxorum[41]

Sp. nov

Valid

Witts et al.

Late Cretaceous (Maastrichtian)

Corsicana Formation

 United States
( Texas)

Hadrothisbites hanwangensis[42]

Sp. nov

In press

Mietto et al.

Late Triassic (Carnian)

Ma'antang Formation

 China

Paracochloceras nunminensis[39]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
( Nevada)

Peripleurites gabbensis[39]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
( Nevada)

A member of Choristocerataceae belonging to the family Rhabdoceratidae.

Placites heggi[39]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
( Nevada)

A member of the family Gymnitidae.

Rhacophyllites mulleri[39]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
( Nevada)

Rhacophyllites volcanoensis[39]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
( Nevada)

Sinotropites[42]

Gen. et sp. nov

In press

Mietto et al.

Late Triassic (Carnian)

Ma'antang Formation

 China

Genus includes new species S. sichuanensis.

Research

  • A modern review of the palaeobiology of heteromorph ammonoids is published by Hoffmann et al. (2021), including details of their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction.[43]
  • Soft parts of a perisphinctid belonging to the genus Subplanites, separated from the conch either taphonomically or during a failed predation, are described from the Tithonian conservation deposits of Wintershof (southern Germany) by Klug et al. (2021).[44]

Other cephalopods

  • A study on the diversity patterns and spatial structure of belemnite assemblages in Western Tethys Ocean during the Early Jurassic is published by Neige, Weis & Fara (2021).[45]
  • A study on chemistry, organization and genesis of circular structures (superficially resembling chromatophores) preserved in coleoid cephalopod specimens from the Jurassic of Germany and the Cretaceous of Lebanon is published by Klug et al. (2021).[46]

Gastropods

Name Novelty Status Authors Age Type locality Country Notes Images

Ampezzogyra angulata[47]

Sp. nov

Valid

Nützel & Hausmann in Hausmann et al.

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A member of the family Stuoraxidae.

Anceps siminescui[48]

Nom. nov

Valid

Harzhauser

Middle-late Miocene

 Moldova

A Trochidae member;
a replacement name for Trochus semistriatus Siminescu & Barbu (1940).

Angulatella[47]

Gen. et sp. nov

Valid

Nützel & Hausmann in Hausmann et al.

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A member of the family Prostyliferidae. The type species is A. bizzarinii.

Bandellina compacta[47]

Sp. nov

Valid

Nützel & Hausmann in Hausmann et al.

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A member of the family Cornirostridae.

Camponaxis bandeli[49]

Sp. nov

Valid

Pieroni, Monari & Todd

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A Tofanellidae member

Cordieria biouesensis[50]

Sp. nov

Valid

Pacaud

Paleocene (Thanetian)

 France

A species of Cordieria.

Ederazyga[49]

Gen. et sp. et comb. nov

Valid

Pieroni, Monari & Todd

Late Triassic (Carnian to Rhaetian)

Nayband Formation
San Cassiano Formation
Zu Limestone

 Iran
 Italy
 Slovenia

A possible Zygopleuridae member.
The type species is E. fanchini;
genus also includes "Cerithium"? lateplicatum Klipstein (1843).

Eopleurotoma atacica[50]

Nom. nov

Valid

Pacaud

Eocene (Ypresian)

 France

A species of Eopleurotoma; a replacement name for Pleurotoma (Eopleurotoma) romani Doncieux (1908).

Gemmula bearrizensis[50]

Nom. nov

Valid

Pacaud

Eocene (Priabonian)

 France

A species of Gemmula; a replacement name for Drillia pellati Boussac (1911).

Gemmula osca[50]

Sp. nov

Valid

Pacaud

Eocene (Bartonian)

 Spain

A species of Gemmula.

Gibbula lovellreevei[48]

Nom. nov

Valid

Harzhauser

Pliocene

 United Kingdom

A Trochidae member;
a replacement name for Trochus (Gibbula) reevei Harmer (1923).

Gibbula steiningeri[48]

Nom. nov

Valid

Harzhauser

Early Miocene

 Austria

A Trochidae member;
a replacement name for Trochus amedei bicincta Schaffer (1912).

Gibbula tavanii[48]

Nom. nov

Valid

Harzhauser

Miocene

 Libya

A Trochidae member;
a replacement name for Gibbula minima Tavani (1939).

Gibbuliculus[48]

Gen. et comb. et nom. nov

Valid

Harzhauser

Oligocene to Pleistocene

 Europe

A Trochidae member;
The type species is "Gibbula" brebioni Landau, Van Dingenen & Ceulemans (2017).
Genus includes G. saccoi (a replacement name for Gibbula protumida Sacco, 1896).

?Hydrocena praecursor[51]

Sp. nov

In press

Yu & Neubauer

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of the family Hydrocenidae.

Pleurotomella irminonvilla[50]

Nom. nov

Valid

Pacaud

Eocene (Bartonian)

 France

A species of Pleurotomella; a replacement name for Pleurotomella cossmanni Morellet & Morellet (1946).

Truncatella jiaozhouensis[52]

Sp. nov

In press

Yu et al.

Late Cretaceous

Jiaolai Basin

 China

A species of Truncatella.

Valvata jiaolaiensis[52]

Sp. nov

In press

Yu et al.

Late Cretaceous

Jiaolai Basin

 China

A species of Valvata.

Bivalves

Name Novelty Status Authors Age Type locality Country Notes Images

Freneixicardia picturata[53]

Sp. nov

Valid

Berezovsky

Eocene

 Ukraine

A cockle.

Loxocardium marmoreum[53]

Sp. nov

Valid

Berezovsky

Eocene

 Ukraine

A cockle.

Schedocardia imperfecta[53]

Sp. nov

Valid

Berezovsky

Eocene

 Ukraine

A cockle.

Echinoderms

Name Novelty Status Authors Age Type locality Country Notes Images

Cantabrigiaster[54]

Gen. et sp. nov

Hunter & Ortega-Hernández

Early Ordovician

Fezouata Formation

 Morocco

A somasteroid asterozoan. The type species is C. fezouataensis.

Trecrinus[55]

Gen. et sp. nov

Valid

Semenov et al.

Ordovician (Darriwilian)

 Russia

A hybocrinid crinoid. Genus includes new species T. schmidti.

Conodonts

Name Novelty Status Authors Age Type locality Country Notes Images

Ozarkodina huenickeni[56]

Sp. nov

In press

Gómez et al.

Silurian (Ludfordian) to Devonian (Lochkovian)

Los Espejos Formation

 Argentina

Fish

Placoderms

Name Novelty Status Authors Age Type locality Country Notes Images

Leptodontichthys[57]

Gen. et sp. nov

Jobbins et al.

Devonian (Givetian)

Taboumakhlouf Formation

 Morocco

A member of Arthrodira belonging to the family Plourdosteidae. The type species is L. ziregensis.

Ray-finned fishes

Name Novelty Status Authors Age Type locality Country Notes Images

Saurichthys sceltrichensis[58]

Sp. nov

Valid

Renesto, Magnani & Stockar

Middle Triassic (Ladinian)

Meride Limestone

  Switzerland

Research

  • A study on the morphological and functional diversity of osteostracan and galeaspid headshields, and on its implications for the knowledge of the ecology of the immediate jawless relatives of jawed vertebrates, is published by Ferrón et al. (2021).[59]
  • Zhu et al. (2021) use CT scanning to reveal the endocast of Brindabellaspis stensioi, and evaluate the implications of its anatomy for the knowledge of the phylogenetic relationships of early jawed vertebrates.[60]
  • Description of the first known skull remains of Onchopristis numidus from the Cretaceous Kem Kem Group (Morocco), and a study on the anatomy and phylogenetic relationships of this species, is published by Villalobos-Segura et al. (2021), who name a new family Onchopristidae.[61]
  • New, exceptionally well‐preserved skeleton of Asteracanthus ornatissimus, preserved with teeth that markedly differ from other teeth referred to Asteracanthus, is described from the Tithonian Altmühltal Formation (Germany) by Stumpf et al. (2021), who interpret this specimen as indicating that Asteracanthus and Strophodus represent two valid genera distinct from all other hybodontiforms.[62]
  • A study on the biomechanics of teeth of five species of Otodus, aiming to assess the functional significance of morphological trends in otodontid teeth and to test whether the morphology of otodontid teeth enabled the transition from piscivory to predation on marine mammals and the evolution of titanic body sizes, is published by Ballell & Ferrón (2021)[63]
  • A study on growth patterns, reproductive biology and likely lifespan of Otodus megalodon is published by Shimada et al. (2021).[64]
  • A review of the fossil record of Early–Middle Triassic marine bony fishes, aiming to determine the implications of poor fossil record from the late Olenekian-early middle Anisian interval on the knowledge of the Triassic radiation of bony fishes, is published by Romano (2021).[65]
  • A diverse assemblage of late Maastrichtian and Paleocene ray-finned fishes is described from Evrytania (Greece) by Argyriou & Davesne (2021).[66]
  • A study on the morphological diversity and evolution of pycnodontiforms is published by Cawley et al. (2021).[67]
  • An ossified lung of a mawsoniid coelacanth is described from the Maastrichtian of Oued Zem (Morocco) by Brito et al. (2021), representing the last known record of a Mesozoic coelacanth and the first known occurrence of coelacanths in the phosphate deposits of North Africa.[68]
  • A study on the evolution of feeding modes among tetrapodomorphs, as indicated by the anatomy of the skull of Tiktaalik roseae, is published by Lemberg, Daeschler & Shubin (2021), who report the simultaneous occurrence of anatomical modifications of the skull for prey capture through biting, as well as joint morphologies suggestive of cranial kinesis that is also present in suction-feeding fish.[69]

Amphibians

  • A study on the function and evolution of forelimbs of early tetrapods, based on data from three-dimensional models of bones and muscles of forelimbs of Eusthenopteron foordi, Acanthostega gunnari and Pederpes finneyae, is published by Molnar et al. (2021).[70]
  • A study on the anatomy and phylogenetic relationships of Macrerpeton huxleyi is published by Schoch & Milner (2021).[71]

Reptiles

Synapsids

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acratophorus[72]

Gen. et comb. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Río Seco de la Quebrada

 Argentina

A kannemeyeriid dicynodont, the type species is "Kannemeyeria" argentinensis.

Borealestes cuillinensis[73]

Sp. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Kilmaluag Formation

 United Kingdom

A docodont.

Dobunnodon[73]

Gen. et comb. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Forest Marble Formation

 United Kingdom

A docodont; a new genus for "Borealestes" mussettae Sigogneau−Russell (2003).

Kannemeyeria aganosteus[72]

Sp. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Quebrada de los Fósiles

 Argentina

A species of Kannemeyeria.

Mobaceras[74]

Gen. et sp. nov

Valid

Kammerer & Sidor

Middle Permian

Madumabisa Mudstone

 Zambia

A burnetiid therapsid. The type species is G. zambeziense.

Research

Mammals

Other animals

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arienigraptus balticus[76]

Sp. nov

In press

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus delicatus[76]

Sp. nov

In press

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus robustus[76]

Sp. nov

In press

Maletz & Ahlberg

Ordovician (Dapingian)

 Sweden

A graptolite.

Buccaspinea[77]

Gen. et sp. nov

Valid

Pates et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A member of Radiodonta belonging to the family Hurdiidae. The type species is B. cooperi.

Cornulites spinosus[78]

Sp. nov

Valid

Vinn & Eyzenga

Late Ordovician

 Netherlands

A cornulitid tubeworm.

Dailyatia icari[79]

Sp. nov

Valid

Claybourn et al.

Cambrian Series 2

Antarctica

A camenellan tommotiid.

Research

  • Shore et al. (2021) report the first three-dimensional, pyritized preservation of soft tissue in Namacalathus hermanastes from the Nama Group (Namibia), and evaluate the implications of this finding for the knowledge of the phylogenetic relationships of this animal.[80]

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bleximothyrium[81]

Gen. et sp. nov

Valid

Le Renard et al.

Early Cretaceous (Aptian)

Potomac Group

 United States
( Virginia)

A fungus belonging to the group Dothideomycetes. Genus includes new species B. ostiolatum.

Columnomyces electri[82]

Sp. nov

Valid

Haelewaters & Perreau in Perreau, Haelewaters & Tafforeau

Miocene

Dominican amber

 Dominican Republic

A fungus, a species of Columnomyces.

Rhizophydites[83]

Gen. et sp. nov

In press

Krings, Serbet & Harper

Early Devonian

Rhynie chert

 United Kingdom

A fungus belonging to the group Chytridiomycota. Genus includes new species R. matryoshkae.

Research

  • Well-preserved communities of large unbranched filamentous microorganisms, bearing morphological and ecological similarities with large sulfide-oxidizing bacteria such as Beggiatoa, are described from the Ediacaran Itajaí Basin (Brazil) by Becker-Kerber et al. (2021).[84]
  • Microfossils which may represent early terrestrial fungi are described from the Ediacaran Doushantuo Formation (China) by Gan et al. (2021).[85]
  • A Rhynie chert fossil Mycokidstonia sphaerialoides, originally interpreted as an ascomycete, is reclassified as a member of Glomeromycota belonging to the family Ambisporaceae by Walker et al. (2021).[86]

History of life in general

  • A study on the taphonomy of eukaryotic organelles, assessing the basis of the view that organelles decay too rapidly to be fossilized and evaluating the plausibility of the claims of organelles preserved in Proterozoic fossils, is published by Carlisle et al. (2021).[87]
  • Geyer & Landing (2021) report a hitherto unknown Cambrian Stage 3 Lagerstätte from the Amouslek Formation (Morocco), preserving the first relatively abundant fossils with exceptional preservation from the Cambrian of Morocco (and Africa).[88]
  • Marchetti et al. (2021) revise the tetrapod (including dinosauromorph) footprint assemblage from the Quarziti del Monte Serra Formation (Ladinian of Italy), and interpret this assemblage and other findings of Ladinian dinosauromorph footprints as evidence of wide dispersal of dinosauromorphs as early as the Middle Triassic.[89]
  • A study on the age of the most recent Pleistocene megafaunal specimens from Cloggs Cave (Australia), and on its implications for the knowledge of the timing and causes of Late Pleistocene extinctions of Australian megafauna, is published by David et al. (2021).[90]
  • A study aiming to determine how observed extinctions in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change is published by Mathes et al. (2021).[91]
  • A study on correlations between fossilization potential and food web features, aiming to determine how fossilization impacts inferences of ancient community structure, is published by Shaw et al. (2021).[92]

Other research

  • A study on the 3.4-billion-year old organic films from the Buck Reef Chert (Kaapvaal Craton, South Africa) is published by Alleon et al. (2021), who interpret their findings as indicating that early Archean organic films carry chemical information directly related to their original molecular compositions, and evaluate the implications of their finding for the knowledge of the initial chemical nature of organic microfossils found in ancient rocks.[93]
  • Evidence of prolonged and repeated oxygen stress in the Appalachian Basin associated with the Late Devonian extinctions is presented by Boyer et al. (2021).[94]
  • Evidence from the southern Karoo Basin of South Africa indicative of at least four atmospheric carbon dioxide spikes coinciding with extinctions on land and at sea from the Late Permian to the Middle Triassic is presented by Retallack (2021).[95]
  • A study evaluating whether fuel-driven changes to fire activity during the Cretaceous period had the ability to counteract rising atmospheric oxygen at this time is published by Belcher et al. (2021), who argue that alteration of fire feedbacks driven by the rise of the flowering plants likely lowered atmospheric oxygen levels from ~30% to 25% by the end of the Cretaceous.[96]
  • White & Campione (2021) describe a workflow in which three-dimensional surface profiles of fragmentary fossils can be quantitatively compared to better-known exemplars in order to identify fragmentary fossils, and apply this workflow to megaraptorid theropod unguals from the Cretaceous of Australia.[97]
  • Alleon et al. (2021) revise reports of organic molecules in animal fossils, and argue that purported signatures of organic molecules are in reality instrumental artefacts resulting from intense background luminescence.[98]

Paleoclimate

  • Scotese et al. (2021) estimate how global temperatures have changed during the last 540 million years.[99]
  • Vento et al. (2021) estimate parameters of the Paleogene to Neogene climate on the basis of data from fossil leaves from the Río Turbio and Río Guillermo formations in southern South America (Argentina).[100]
  • A study aiming to reconstruct summer and winter temperatures in the Late Pleistocene when Neanderthals were using the site of La Ferrassie (France), based on data from oxygen isotope measurements of bovid tooth enamel, is published by Pederzani et al. (2021).[101]

References

  1. Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. Erdei, B.; Hably, L. (2021). "Fossil Gordonia (s.l.)–like (Theaceae) winged seeds from the early Miocene of the Mecsek Mts, W Hungary". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-020-00461-0.
  3. Centeno-González, N. K.; Martínez-Cabrera, H. I.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2021). "Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation". Communications Biology. 4: Article number 41. doi:10.1038/s42003-020-01533-9. PMC 7809014. PMID 33446929.
  4. Shukla, A.; Mehrotra, R. C.; Verma, P.; Chandra, K.; Singh, A. (2021). ""Out-of-India" dispersal for Adina (tribe Naucleeae; family Rubiaceae): evidence from the early Eocene fossil record from India". Palaeoworld. in press. doi:10.1016/j.palwor.2021.01.001.
  5. Wang, B.; Zhang, S.; Zhang, P.; Yang, Y.; Chen, J.; Zhang, Y.; Xie, S. (2021). "A new occurrence of Craigia (Malvaceae) from the Miocene of Yunnan and its biogeographic significance". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1867980.
  6. Jia, L.B.; Nam, G.S.; Su, T.; Stull, G.W.; Li, S.F.; Huang, Y.J.; Zhou, Z.K. (2021). "Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants". Plant Diversity. in press. doi:10.1016/j.pld.2020.12.006.
  7. Soomro, N.; Mangi, J.; Panhwer, M.; Jatoi, G.; Khuhro, S.; Khokhar, Q.; Khan, S.; Mengal, A.; Shaikh, N. (2021). "Anatomical characteristics of fossil wood collected from the Manchar Formation (Miocene), Thano Bula Khan, Sindh, Pakistan". Italian Botanist. 11: 1–8. doi:10.3897/italianbotanist.11.60344.
  8. Smith, S. Y.; Kapgate, D. K.; Robinson, S.; Srivastava, R.; Benedict, J. C.; Manchester, S. R. (2021). "Fossil fruits and seeds of Zingiberales from the Late Cretaceous–early Cenozoic Deccan Intertrappean Beds of India". International Journal of Plant Sciences. in press. doi:10.1086/711474.
  9. Hernández, J. A. R. (2021). "Nigericolpites: a replacement name for the illegitimate Maastrichtian magnoliopsid pollen genus Clavatricolpites Hoeken-Klink. (Angiospermae: Magnoliopsida)". Grana. in press. doi:10.1080/00173134.2020.1827025.
  10. Wu, J.; Chen, H.; Ruan, S.; Yang, M.; Mo, L.; Ji, B.; Zhang, J.; Ding, S. (2021). "Fossil leaves of Podocarpus subgenus Foliolatus (Podocarpaceae) from the Pliocene of southwestern China and biogeographic history of Podocarpus". Review of Palaeobotany and Palynology. in press: Article 104380. doi:10.1016/j.revpalbo.2021.104380.
  11. Wang, S.-J.; Wang, J.; Liu, L.; Hilton, J. (2021). "Stem diversity of the marattialean tree fern family Psaroniaceae from the earliest Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology. in press: Article 104378. doi:10.1016/j.revpalbo.2021.104378.
  12. Correia, P.; Šimůnek, Z.; Sá, A. A. (2021). "The equisetalean Iberisetum wegeneri gen. nov., sp. nov. from the Upper Pennsylvanian of Portugal". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2021.1874373.
  13. Sanjuan, J.; Vicente, A.; Pérez-Cano, J.; Stoica, M.; Martín-Closas, C. (2021). "Early Cretaceous charophytes from south Dobrogea (Romania). Biostratigraphy and palaeobiogeography". Cretaceous Research. in press: Article 104762. doi:10.1016/j.cretres.2021.104762.
  14. Pšenička, J.; Wang, J.; Bek, J.; Pfefferkorn, H. W.; Opluštil, S.; Zhou, W.; Frojdová, J.; Libertín, M. (2021). "A zygopterid fern with fertile and vegetative parts in anatomical and compression preservation from the earliest Permian of Inner Mongolia, China". Review of Palaeobotany and Palynology. in press: Article 104382. doi:10.1016/j.revpalbo.2021.104382.
  15. Bonacorsi, N. K.; Gensel, P. G.; Hueber, F. M.; Leslie, A. B. (2021). "Omniastrobus gen. nov., an Emsian plant with implications for the evolution of heterospory in the Early Devonian". International Journal of Plant Sciences. in press. doi:10.1086/712356.
  16. Machado, M. A.; Vera, E. I.; Passalia, M. G.; Ponce, M. M. (2021). "Eupolypod ferns with dryopteroid/thelypteroid traits from Arroyo Chacay (Huitrera Formation, Eocene), Río Negro Province, Argentina". Review of Palaeobotany and Palynology. in press: Article 104381. doi:10.1016/j.revpalbo.2021.104381.
  17. Wilson, P. K.; Wilson Mantilla, G. P.; Strӧmberg, C. A. E. (2021). "Seafood Salad: A diverse latest Cretaceous flora from eastern Montana". Cretaceous Research. 121: Article 104734. doi:10.1016/j.cretres.2020.104734.
  18. Silvestro, D.; Bacon, C. D.; Dong, W.; Zhang, Q.; Donoghue, P. C. J.; Antonelli, A.; Xing, Y. (2021). "Fossil data support a pre-Cretaceous origin of flowering plants". Nature Ecology & Evolution. in press. doi:10.1038/s41559-020-01387-8. PMID 33510432.
  19. Prebble, J. G.; Kennedy, E. M.; Reichgelt, T.; Clowes, C.; Womack, T.; Mildenhall, D. C.; Raine, J. I.; Crouch, E. M. (2021). "A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene". Palaeogeography, Palaeoclimatology, Palaeoecology. 566: Article 110207. doi:10.1016/j.palaeo.2020.110207.
  20. Song, X.; Ruthensteiner, B.; Lyu, M.; Liu, X.; Wang, J.; Han, J. (2021). "Advanced Cambrian hydroid fossils (Cnidaria: Hydrozoa) extend the medusozoan evolutionary history". Proceedings of the Royal Society B: Biological Sciences. 288 (1944): Article ID 20202939. doi:10.1098/rspb.2020.2939. PMID 33529559.
  21. Sendino, C.; Bochmann, M. M. (2021). "An exceptionally preserved conulariid from Ordovician erratics of Northern European Lowlands". PalZ. in press. doi:10.1007/s12542-020-00534-7.
  22. Khaustov, A. A.; Vorontsov, D. D.; Perkovsky, E. E.; Lindquist, E. E. (2021). "Review of fossil heterostigmatic mites (Acari: Heterostigmata) from late Eocene Rovno Amber. I. Families Tarsocheylidae, Dolichocybidae and Acarophenacidae". Systematic and Applied Acarology. 26 (1): 33–61. doi:10.11158/saa.26.1.3.
  23. Magalhaes, I. L. F.; Porta, A .O.; Wunderlich, J.; Proud, D. N.; Ramírez, M. J.; Pérez-González, A. (2021). "Taxonomic revision of fossil Psilodercidae and Ochyroceratidae spiders (Araneae: Synspermiata), with a new species of Priscaleclercera from mid-Cretaceous Burmese amber, northern Myanmar". Cretaceous Research. 121: Article 104751. doi:10.1016/j.cretres.2020.104751.
  24. Ferratges, F. A.; Hyžný, M.; Zamora, S. (2021). "Taphonomy and systematics of decapod crustaceans from the Aptian (Lower Cretaceous) in the Oliete Sub-basin (Teruel, Spain)". Cretaceous Research. in press: Article 104767. doi:10.1016/j.cretres.2021.104767.
  25. Winkler, N. (2021). "One new genus and three new species of caridean shrimps (Crustacea: Decapoda) from the Upper Jurassic Solnhofen Lithographic Limestones (Southern Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 49–70. doi:10.1127/njgpa/2021/0954.
  26. Poschmann, M. J. (2021). "A new phyllocarid (Crustacea, Archaeostraca) from the Early Devonian (late Emsian) Heckelmann Mill Fossil-Lagerstätte (Lahn Syncline, Rhineland-Palatinate, SW-Germany)". PalZ. in press. doi:10.1007/s12542-020-00535-6.
  27. Devillez, J.; Charbonnier, S. (2021). "Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)". Geodiversitas. 43 (2): 25–73. doi:10.5252/geodiversitas2021v43a2.
  28. Vázquez García, B.; Ceolin, D.; Fauth, G.; Borghi, L.; Valle, B.; Rios Netto, A. M. (2021). "Ostracods from the late Albian–early Cenomanian of the Sergipe–Alagoas Basin, Brazil: New taxonomic and biostratigraphic inferences". Journal of South American Earth Sciences. 108: Article 103169. doi:10.1016/j.jsames.2021.103169.
  29. Slipper, I. J. (2021). "Ostracoda from the Turonian of South-East England Part 2. Cytherocopina". Monographs of the Palaeontographical Society. 174 (657): 47–167. doi:10.1080/02693445.2020.1782044.
  30. Wang, H.; Han, W.-C.; Zhang, G.-Q.; Zhang, Y.-M.; Wang, M.-Z.; Li, S.; Cao, M.-Z.; Zhang, H.-C. (2021). "Paleogene ostracodes from the Dawenkou Basin, East China and their biostratigraphic significance for the age of mineral resources". Palaeoworld. in press. doi:10.1016/j.palwor.2021.01.007.
  31. Glinskikh, L. A.; Tesakova, E. M. (2021). "First data on the Callovian ostracodes of central Dagestan". Paleontological Journal. 55 (1).
  32. Matzke-Karasz, R.; Smith, R. J. (2021). "Temporal shifts in ostracode sexual dimorphism from the Late Cretaceous to the late Eocene of the U.S. Coastal Plain". Marine Micropaleontology. in press: Article 101959. doi:10.1016/j.marmicro.2020.101959.
  33. Peel, J. S. (2021). "Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia)". Bulletin of the Geological Society of Denmark. 69: 1–33. doi:10.37570/bgsd-2021-69-01.
  34. Bicknell, R. D. C.; Holmes, J. D.; Edgecombe, G. D.; Losso, S. R.; Ortega-Hernández, J.; Wroe, S.; Paterson, J. R. (2021). "Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202075. doi:10.1098/rspb.2020.2075. PMID 33499790.
  35. Bault, V.; Crônier, C.; Allaire, N.; Monnet, C. (2021). "Trilobite biodiversity trends in the Devonian of North Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 565: Article 110208. doi:10.1016/j.palaeo.2020.110208.
  36. Riquelme, F.; Hernández-Patricio, M.; Álvarez-Rodríguez, M. (2021). "A Miocene pyrgodesmid millipede (Polydesmida: Pyrgodesmidae) from Mexico". PeerJ. 9: e10574. doi:10.7717/peerj.10574.
  37. Dzik, J. (2021). "Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat". Arthropod Structure & Development. 61: Article 101026. doi:10.1016/j.asd.2020.101026. PMID 33508709.
  38. Blodgett, R. B.; Santucci, V. L.; Baranov, V. V.; Hodges, M. S. (2021). "The gypidulid brachiopod genus Carinagypa in late Emsian (latest Early Devonian) strata of the Shellabarger Pass area (Farewell Terrane), Denali National Park & Preserve, south-central Alaska" (PDF). New Mexico Museum of Natural History and Science Bulletin. 82: 19–28.
  39. Taylor, D.; Guex, J.; Lucas, S. G. (2021). "Ammonoids of the latest Triassic Gabbs Formation at New York Canyon, Mineral County, Nevada". New Mexico Museum of Natural History and Science Bulletin. 82: 393–425.
  40. Taylor, D.; Guex, J. (2021). "Early Sinemurian ammonoids and biochronology of the Sunrise Formation, New York Canyon, Mineral County, Nevada". New Mexico Museum of Natural History and Science Bulletin. 82: 371–391.
  41. Witts, J. D.; Landman, N. H.; Garb, M. P.; Irizarry, K. M.; Larina, E.; Thibault, N.; Razmjooei, M. J.; Yancey, T. E.; Myers, C. E. (2021). "Cephalopods from the Cretaceous-Paleogene (K-Pg) boundary interval on the Brazos River, Texas, and extinction of the ammonites". American Museum Novitates. 3964: 1–52. doi:10.1206/3964.1. hdl:2246/7250.
  42. Mietto, P.; Jin, X.; Manfrin, S.; Lu, G.; Shi, Z.; Gianolla, P.; Huang, X.; Preto, N. (2021). "Onset of sedimentation near the Carnian/Norian boundary in the northwestern Sichuan Basin: New evidence from ammonoid biostratigraphy and zircon U–Pb geochronology". Palaeogeography, Palaeoclimatology, Palaeoecology. in press: Article 110246. doi:10.1016/j.palaeo.2021.110246.
  43. Hoffmann, R.; Slattery, J. S.; Kruta, I.; Linzmeier, B. J.; Lemanis, R. E.; Mironenko, A.; Goolaerts, S.; De Baets, K.; Peterman, D. J.; Klug, C. (2021). "Recent advances in heteromorph ammonoid palaeobiology". Biological Reviews. in press. doi:10.1111/brv.12669. PMID 33438316.
  44. Klug, C.; Schweigert, G.; Tischlinger, H.; Pochmann, H. (2021). "Failed prey or peculiar necrolysis? Isolated ammonite soft body from the Late Jurassic of Eichstätt (Germany) with complete digestive tract and male reproductive organs". Swiss Journal of Palaeontology. 140 (1): Article 3. doi:10.1186/s13358-020-00215-7.
  45. Neige, P.; Weis, R.; Fara, E. (2021). "Ups and downs of belemnite diversity in the Early Jurassic of Western Tethys". Palaeontology. in press. doi:10.1111/pala.12522.
  46. Klug, C.; Di Silvestro, G.; Hoffmann, R.; Schweigert, G.; Fuchs, D.; Clements, T.; Gueriau, P. (2021). "Taphonomic patterns mimic biologic structures: diagenetic Liesegang rings in Mesozoic coleoids and coprolites". PeerJ. 9: e10703. doi:10.7717/peerj.10703. PMC 7811783. PMID 33520466.
  47. Hausmann, I. M.; Nützel, A.; Roden, V. J.; Reich, M. (2021). "Palaeoecology of tropical marine invertebrate assemblages from the Late Triassic of Misurina, Dolomites, Italy". Acta Palaeontologica Polonica. Online edition. doi:10.4202/app.00659.2019.
  48. Harzhauser, M. (2021). "The Cainozoic to present-day record of Circum-Mediterranean, NE Atlantic and North Sea Cantharidinae and Trochinae (Trochoidea, Gastropoda)—a synopsis". Zootaxa. 4902 (1): 1–81. doi:10.11646/zootaxa.4902.1.1.
  49. Pieroni, V.; Monari, S.; Todd, J. A. (2021). "A new caenogastropod from the upper Rhaetian of Lombardy: Palaeobiogeographical history and implications for the Early Jurassic gastropod recovery". Acta Palaeontologica Polonica. Online edition. doi:10.4202/app.00792.2020.
  50. Pacaud, J.-M. (2021). "Remarques taxonomiques et nomenclaturales sur les mollusques gastéropodes du Paléogène de France et description d'espèces nouvelles. Partie 3. Conoidea". Xenophora Taxonomy. 31: 41–48.
  51. Yu, T.; Neubauer, T. A. (2021). "The oldest fossil Hydrocenidae found in mid-Cretaceous Burmese amber (Gastropoda: Cycloneritida)". Cretaceous Research. in press: Article 104765. doi:10.1016/j.cretres.2021.104765.
  52. Yu, T.; Salvador, R. B.; Wang, H.; Fang, Y.; Neubauer, T. A.; Li, S.; Zhang, H.; Wan, X. (2021). "A latest Cretaceous gastropod fauna from the Jiaolai Basin of East Asia". Cretaceous Research. 121: Article 104736. doi:10.1016/j.cretres.2020.104736.
  53. Berezovsky, A. A. (2021). "New species of Cardiidae (Bivalvia) from the Eocene of Ukraine". Paleontological Journal. 55 (1).
  54. Hunter, A. W.; Ortega-Hernández, J. (2021). "A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa". Biology Letters. 17 (1): Article ID 20200809. doi:10.1098/rsbl.2020.0809. PMID 33465330.
  55. Semenov, N. K.; Terentyev, S. S.; Mirantsev, G. V.; Rozhnov, S. V. (2021). "A new hybocrinid genus (Echinodermata, Crinoidea) from the Middle Ordovician of Ladoga Glint on the Volkhov River". Paleontological Journal. 55 (1).
  56. Gómez, M. J.; Mestre, A.; Corradini, C.; Heredia, S. (2021). "A new species, Ozarkodina huenickeni, from the upper Silurian - Lower Devonian in San Juan Precordillera, South America". Journal of South American Earth Sciences. 108: Article 103174. doi:10.1016/j.jsames.2021.103174.
  57. Jobbins, M.; Rücklin, M.; Argyriou, T.; Klug, C. (2021). "A large Middle Devonian eubrachythoracid 'placoderm' (Arthrodira) jaw from northern Gondwana". Swiss Journal of Palaeontology. 140 (1): Article 2. doi:10.1186/s13358-020-00212-w.
  58. Renesto, S.; Magnani, F.; Stockar, R. (2021). "A new species of Saurichthys (Actinopterygii: Saurichtydae) from the Middle Triassic of Monte San Giorgio". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 49–71. doi:10.13130/2039-4942/15143.
  59. Ferrón, H. G.; Martínez-Pérez, C.; Rahman, I. A.; de Lucas, V. S.; Botella, H.; Donoghue, P. C. J. (2021). "Functional assessment of morphological homoplasy in stem-gnathostomes". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202719. doi:10.1098/rspb.2020.2719. PMID 33467997.
  60. Zhu, Y.; Giles, S.; Young, G. C.; Hu, Y.; Bazzi, M.; Ahlberg, P. E.; Zhu, M.; Lu, J. (2021). "Endocast and bony labyrinth of a Devonian "placoderm" challenges stem gnathostome phylogeny". Current Biology. in press. doi:10.1016/j.cub.2020.12.046. PMID 33508218.
  61. Villalobos-Segura, Y.; Kriwet, J.; Vullo, R.; Stumpf, S.; Ward, D. J.; Underwood, C. J. (2021). "The skeletal remains of the euryhaline sclerorhynchoid †Onchopristis (Elasmobranchii) from the 'Mid'-Cretaceous and their palaeontological implications". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa166.
  62. Stumpf, S.; López‐Romero, F. A.; Kindlimann, R.; Lacombat, F.; Pohl, B; Kriwet, J. (2021). "A unique hybodontiform skeleton provides novel insights into Mesozoic chondrichthyan life". Papers in Palaeontology. in press. doi:10.1002/spp2.1350.
  63. Ballell, A.; Ferrón, H. G. (2021). "Biomechanical insights into the dentition of megatooth sharks (Lamniformes: Otodontidae)". Scientific Reports. 11: Article number 1232. doi:10.1038/s41598-020-80323-z. PMC 7806677. PMID 33441828.
  64. Shimada, K.; Bonnan, M. F.; Becker, M. A.; Griffiths, M. L. (2021). "Ontogenetic growth pattern of the extinct megatooth shark Otodus megalodon—implications for its reproductive biology, development, and life expectancy". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1861608.
  65. Romano, C. (2021). "A hiatus obscures the early evolution of modern lineages of bony fishes". Frontiers in Earth Science. 8: Article 618853. doi:10.3389/feart.2020.618853.
  66. Argyriou, T.; Davesne, D. (2021). "Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece". PeerJ. 9: e10676. doi:10.7717/peerj.10676. PMC 7825367.
  67. Cawley, J. J.; Marramà, G.; Carnevale, G.; Villafaña, J. A.; López‐Romero, F. A.; Kriwet, J. (2021). "Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade". Ecology and Evolution. in press. doi:10.1002/ece3.7168.
  68. Brito, P. M.; Martill, D. M.; Eaves, I.; Smith, R.; Cooper, S. L. A. (2021). "A marine Late Cretaceous (Maastrichtian) coelacanth from North Africa". Cretaceous Research. in press: Article 104768. doi:10.1016/j.cretres.2021.104768.
  69. Lemberg, J. B.; Daeschler, E. B.; Shubin, N. H. (2021). "The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting". Proceedings of the National Academy of Sciences of the United States of America. 118 (7): e2016421118. doi:10.1073/pnas.2016421118. PMID 33526593.
  70. Molnar, J. L.; Hutchinson, J. R.; Diogo, R.; Clack, J. A.; Pierce, S. E. (2021). "Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition". Science Advances. 7 (4): eabd7457. doi:10.1126/sciadv.abd7457. PMID 33523947.
  71. Schoch, R. R.; Milner, A. R. (2021). "Morphology and relationships of the temnospondyl Macrerpeton huxleyi from the Pennsylvanian of Linton, Ohio (USA)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 77–98. doi:10.1127/njgpa/2021/0956.
  72. Kammerer, C. F.; Ordoñez, M. D. (2021). "Dicynodonts (Therapsida: Anomodontia) of South America". Journal of South American Earth Sciences. 108: Article 103171. doi:10.1016/j.jsames.2021.103171.
  73. Panciroli, E.; Benson, R. B. J.; Fernandez, V.; Butler, R. J.; Fraser, N. C.; Luo, Z.-X.; Walsh, S. (2021). "New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa144.
  74. Kammerer, C. F.; Sidor, C. A. (2021). "A new burnetiid from the middle Permian of Zambia and a reanalysis of burnetiamorph relationships". Papers in Palaeontology. In press. doi:10.1002/spp2.1341.
  75. Wang, J.; Wible, J. R.; Guo, B.; Shelley, S. L.; Hu, H.; Bi, S. (2021). "A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan". Nature. in press. doi:10.1038/s41586-020-03137-z. PMID 33505017.
  76. Maletz, J.; Ahlberg, P. (2021). "Dapingian to lower Darriwilian (Middle Ordovician) graptolite biostratigraphy and correlation of the Krapperup drill core, Scania, Sweden". GFF. in press. doi:10.1080/11035897.2020.1822439.
  77. Pates, S.; Lerosey-Aubril, R.; Daley, A. C.; Kier, C.; Bonino, E.; Ortega-Hernández, J. (2021). "The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian)". PeerJ. 9: e10509. doi:10.7717/peerj.10509. PMC 7821760.
  78. Vinn, O.; Eyzenga, J. (2021). "When did spines appear in cornulitids – a new spiny Cornulites from the Upper Ordovician of Baltica". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 99–105. doi:10.1127/njgpa/2021/0957.
  79. Claybourn, T. M.; Skovsted, C. B.; Betts, M. J.; Holmer, L. E.; Bassett-Butt, L.; Brock, G. A. (2021). "Camenellan tommotiids from the Cambrian Series 2 of East Antarctica: Biostratigraphy, palaeobiogeography, and systematics". Acta Palaeontologica Polonica. Online edition. doi:10.4202/app.00758.2020.
  80. Shore, A. J.; Wood, R. A.; Butler, I. B.; Zhuravlev, A. Yu.; McMahon, S.; Curtis, A.; Bowyer, F. T. (2021). "Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion". Science Advances. 7 (1): eabf2933. doi:10.1126/sciadv.abf2933. PMC 7775780. PMID 33523867.
  81. Le Renard, L.; Stockey, R. A.; Upchurch, G. R.; Berbee, M. L. (2021). "Extending the fossil record for foliicolous Dothideomycetes: Bleximothyrium ostiolatum gen. et sp. nov., a unique fly‐speck fungus from the Lower Cretaceous of Virginia, USA". American Journal of Botany. 108 (1): 129–144. doi:10.1002/ajb2.1602. PMID 33528044.
  82. Perreau, M.; Haelewaters, D.; Tafforeau, P. (2021). "A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections". Scientific Reports. 11 (1): Article number 2672. doi:10.1038/s41598-020-79481-x. PMC 7846571. PMID 33514784.
  83. Krings, M.; Serbet, S. M.; Harper, C. J. (2021). "Rhizophydites matryoshkae gen. et sp. nov. (fossil Chytridiomycota) on spores of the early land plant Horneophyton lignieri from the Lower Devonian Rhynie Chert". International Journal of Plant Sciences. in press. doi:10.1086/712250.
  84. Becker-Kerber, B.; de Barros, G. E. B.; Paim, P. S. G.; Prado, G. M. E. M.; Rosa, A. L. Z.; El Albani, A.; Laflamme, M. (2021). "In situ filamentous communities from the Ediacaran (approx. 563 Ma) of Brazil". Proceedings of the Royal Society B: Biological Sciences. 288 (1942): Article ID 20202618. doi:10.1098/rspb.2020.2618. PMID 33402067.
  85. Gan, T.; Luo, T.; Pang, K.; Zhou, C.; Zhou, G.; Wan, B.; Li, G.; Yi, Q.; Czaja, A. D.; Xiao, S. (2021). "Cryptic terrestrial fungus-like fossils of the early Ediacaran Period". Nature Communications. 12: Article number 641. doi:10.1038/s41467-021-20975-1. PMID 33510166.
  86. Walker, C.; Harper, C. J.; Brundrett, M.; Krings, M. (2021). "The Early Devonian fungus Mycokidstonia sphaerialoides from the Rhynie chert is a member of the Ambisporaceae (Glomeromycota, Archaeosporales), not an ascomycete". Review of Palaeobotany and Palynology. in press: Article 104384. doi:10.1016/j.revpalbo.2021.104384.
  87. Carlisle, E. M.; Jobbins, M.; Pankhania, V.; Cunningham, J. A.; Donoghue, P. C. J. (2021). "Experimental taphonomy of organelles and the fossil record of early eukaryote evolution". Science Advances. 7 (5): eabe9487. doi:10.1126/sciadv.abe9487.
  88. Geyer, G.; Landing, E. (2021). "The Souss lagerstätte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstätte from Africa". Scientific Reports. 11: Article number 3107. doi:10.1038/s41598-021-82546-0. PMID 33542356.
  89. Marchetti, L.; Collareta, A.; Belvedere, M.; Leonardi, G. (2021). "Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110235. doi:10.1016/j.palaeo.2021.110235.
  90. David, B.; Arnold, L. J.; Delannoy, J.-J.; Fresløv, J.; Urwin, C.; Petchey, P.; McDowell, M. C.; Mullett, R.; GunaiKurnai Land and Waters Aboriginal Corporation; Mialanes, J.; Wood, R.; Crouch, J.; Berthet, J.; Wong, V. N. L.; Green, H.; Hellstrom, J. (2021). "Late survival of megafauna refuted for Cloggs Cave, SE Australia: Implications for the Australian Late Pleistocene megafauna extinction debate". Quaternary Science Reviews. 253: Article 106781. doi:10.1016/j.quascirev.2020.106781.
  91. Mathes, G. H.; van Dijk, J.; Kiessling, W.; Steinbauer, M. J. (2021). "Extinction risk controlled by interaction of long-term and short-term climate change". Nature Ecology & Evolution. in press. doi:10.1038/s41559-020-01377-w. PMID 33462487.
  92. Shaw, J. O.; Coco, E.; Wootton, K.; Daems, D.; Gillreath-Brown, A.; Swain, A.; Dunne, J. A. (2021). "Disentangling ecological and taphonomic signals in ancient food webs". Paleobiology. in press. doi:10.1017/pab.2020.59.
  93. Alleon, J.; Bernard, S.; Olivier, N.; Thomazo, T.; Marin-Carbonne, J. (2021). "Inherited geochemical diversity of 3.4 Ga organic films from the Buck Reef Chert, South Africa". Communications Earth & Environment. 2: Article number 6. doi:10.1038/s43247-020-00066-7.
  94. Boyer, D. L.; Martinez, A. M.; Evans, S. D.; Cohen, P. A.; Haddad, E. E.; Pippenger, K. H.; Love, G. D.; Droser, M. L. (2021). "Living on the edge: The impact of protracted oxygen stress on life in the Late Devonian". Palaeogeography, Palaeoclimatology, Palaeoecology. 566: Article 110226. doi:10.1016/j.palaeo.2021.110226.
  95. Retallack, G. J. (2021). "Multiple Permian-Triassic life crises on land and at sea". Global and Planetary Change. 198: Article 103415. doi:10.1016/j.gloplacha.2020.103415.
  96. Belcher, C. M.; Mills, B. J. W.; Vitali, R.; Baker, S. J.; Lenton, T. M.; Watson, A. J. (2021). "The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen". Nature Communications. 12: Article number 503. doi:10.1038/s41467-020-20772-2. PMC 7820256. PMID 33479227.
  97. White, M. A.; Campione, N. E. (2021). "A three-dimensional approach to visualize pairwise morphological variation and its application to fragmentary palaeontological specimens". PeerJ. 9: e10545. doi:10.7717/peerj.10545. PMC 7821773.
  98. Alleon, J.; Montagnac, G.; Reynard, B.; Brulé, T.; Thoury, M.; Gueriau, P. (2021). "Pushing Raman spectroscopy over the edge: purported signatures of organic molecules in fossil animals are instrumental artefacts". BioEssays. in press: Article 2000295. doi:10.1002/bies.202000295. PMID 33543495.
  99. Scotese, C. R.; Song, H.; Mills, B. J. W.; van der Meer, D. G. (2021). "Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years". Earth-Science Reviews. in press: Article 103503. doi:10.1016/j.earscirev.2021.103503.
  100. Vento, B.; Puebla, G. G.; Pinzón, D.; Prámparo, M. (2021). "Paleoclimate estimates for the Paleogene-Neogene in southern South America using fossil leaves as proxies". Comptes Rendus Palevol. 20 (3): 29–48. doi:10.5852/cr-palevol2021v20a3.
  101. Pederzani, S.; Aldeias, V.; Dibble, H. L.; Goldberg, P.; Hublin, J.-J.; Madelaine, S.; McPherron, S. P.; Sandgathe, D.; Steele, T. E.; Turq, A.; Britton, K. (2021). "Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France)". Scientific Reports. 11: Article number 1419. doi:10.1038/s41598-020-80777-1. PMC 7809458. PMID 33446842.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.