IEEE Visualization

The IEEE Visualization Conference (VIS) is an annual conference on scientific visualization, information visualization, and visual analytics administrated by the IEEE Computer Society Technical Committee on Visualization and Graphics. As ranked by Google Scholar's h-index metric in 2016, VIS is the highest rated venue for visualization research and the second-highest rated conference for computer graphics over all.[1] It has an 'A' rating from the Australian Ranking of ICT Conferences[2] and an 'A' rating from the Brazilian ministry of education. The conference is highly selective with generally < 25% acceptance rates for all papers.[3][4]

IEEE Visualization
AbbreviationVIS
DisciplineVisualization
Publication details
PublisherIEEE Computer Society
History1990-present
FrequencyAnnual

Location

The conference is held in October and rotates around the US generally West, Central and East. In 2014, for its 25th anniversary, the conference took place for the first time outside of the US, namely in Paris.[5]

Past conferences:

Future conferences:

Awards

VIS Best Paper Award

2019:[6]

  • VAST
    • FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System: Bowen Yu, Claudio Silva
  • InfoVis
    • Data Changes Everything: Challenges and Opportunities in Data Visualization Design Handoff: Jagoda Walny, Christian Frisson, Mieka West, Doris Kosminsky, Søren Knudsen, Sheelagh Carpendale, Wesley Willett
  • SciVis
    • InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations: Wenbin He, Junpeng Wang, Hanqi Guo, Ko-Chih Wang, Han-Wei Shen, Mukund Raj, Youssef S. G. Nashed, Tom Peterka

2018:

  • VAST
    • TPFlow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis, Dongyu Liu, Panpan Xu, Liu Ren
  • InfoVis
    • Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco, Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith, Bill Howe, Jeffrey Heer
  • SciVis
    • Deadeye: A Novel Preattentive Visualization Technique Based on Dichoptic Presentation Authors: Andrey Krekhov, Jens Krüger

2017:

  • VAST
    • Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow, Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz, Dilip Krishnan, Fernanda B. Viégas, and Martin Wattenberg
  • InfoVis
    • Modeling Color Difference for Visualization Design, Danielle Albers Szafir
  • SciVis
    • Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization, Karl Bladin, Emil Axelsson, Erik Broberg, Carter Emmart, Patric Ljung, Alexander Bock, and Anders Ynnerman

2016:

  • VAST
    • An Analysis of Machine- and Human-Analytics in Classification, Gary K.L. Tam, Vivek Kothari, Min Chen
  • InfoVis
    • Vega-Lite: A Grammar of Interactive Graphics, Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer
  • SciVis
    • Jacobi Fiber Surfaces for Bivariate Reeb Space Computation, Julien Tierny and Hamish Carr

2015

  • VAST
    • Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration, Stef van den Elzen, Danny Holten, Jorik Blaas, Jarke van Wijk
  • InfoVis
    • HOLA: Human-like Orthogonal Network Layout, Steve Kieffer, Tim Dwyer, Kim Marriott, Michael Wybrow
  • SciVis
    • Visualization-by-Sketching: An Artist’s Interface for Creating Multivariate Time-Varying Data, David Schroeder, Daniel Keefe

2014

  • VAST
    • Supporting Communication and Coordination in Collaborative Sensemaking, Narges Mahyar, Melanie Tory
  • InfoVis
    • Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations, Stef van den Elzen, Jarke van Wijk
  • SciVis
    • Visualization of Brain Microstructure through Spherical Harmonics Illumination of High Fidelity Spatio-Angular Fields, Sujal Bista, Jiachen Zhou, Rao Gullapalli, Amitabh Varshney

2013

  • VAST
    • A Partition-Based Framework for Building and Validating Regression Models, Thomas Muhlbacher, Harald Piringer
  • InfoVis
    • LineUp: Visual Analysis of Multi-Attribute Rankings, Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, Marc Streit
  • SciVis
    • Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles, Mathias Hummel, Harald Obermaier, Christoph Garth, Kenneth I. Joy

Technical Achievement Award

Past recipients:

Career Award

To earn the IEEE VGTC Visualization Career Award, an individual must demonstrate that their research and service has had broad impacts on the field over a long period of time.

Past recipients:

References

  1. Kosara, Robert (11 November 2013). "A Guide to the Quality of Different Visualization Venues". eagereyes. Retrieved 6 April 2017.
  2. "Australian Ranking of ICT Conferences". core.edu.au. Archived from the original on 9 April 2013. Retrieved 6 April 2017.
  3. Elmqvist, Niklas. "Top Scientific Conferences and Journals in InfoVis". UMIACS. University of Maryland. Retrieved 6 April 2017.
  4. Boris Schauerte. "Conference Ranks". conferenceranks.com. Retrieved 6 April 2017.
  5. "IEEE VIS 2014". ieeevis.org. 2014.
  6. "Best Paper Awards". ieeevis. Retrieved 23 November 2019.
  7. Gröller, Eduard (2019). "The 2019 Visualization Technical Achievement Award" (PDF). 2019 IEEE Conference on Visual Analytics Science and Technology (VAST). Retrieved 23 November 2019.
  8. Ynnerman, Anders (2019). "The 2018 Visualization Technical Achievement Award". 2018 IEEE Conference on Visual Analytics Science and Technology (VAST). 25: xxix. doi:10.1109/TVCG.2018.2874731.
  9. Ebert, David (2016). "The 2016 Visualization Technical Achievement Award". 2016 IEEE Conference on Visual Analytics Science and Technology (VAST): xi. doi:10.1109/VAST.2016.7883503. ISBN 978-1-5090-5661-3.
  10. Dill, John (2017). "The 2016 Visualization Career Award". IEEE Transactions on Visualization and Computer Graphics. 23 (1): xxiv. doi:10.1109/TVCG.2016.2599298. ISSN 1077-2626.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.