Zinc molybdate

Zinc molybdate is an inorganic compound with the formula ZnMoO4. It is used as a white pigment, which that is also a corrosion inhibitor. A related pigment is sodium zinc molybdate, Na2Zn(MoO4)2.[3] The material has also been investigated as an electrode material.[4]

Zinc molybdate[1]
Identifiers
ECHA InfoCard 100.033.965
UNII
Properties
ZnMoO4
Molar mass 225.33 g/mol
Appearance white tetragonal crystals
Density 4.32 g/cm3[2]
Melting point 900 °C (1,650 °F; 1,170 K)
insoluble
Structure
tetragonal
Hazards
not listed
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
2
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

In terms of its structure, the Mo(VI) centers are tetrahedral and the Zn(II) centers are octahedral.[2]

Safety

The LD50 (oral, rats) is 11,500 mg/kg.[3] While highly soluble molybdates like e.g. sodium molybdate are toxic in higher doses, zinc molybdate is essentially non-toxic because of its insolubility in water. Molybdates possess a lower toxicity than chromates or lead salts and are therefore seen as an alternative to these salts for corrosion inhibition.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 4–95, ISBN 978-0-8493-0594-8
  2. Ait Ahsaine, H.; Zbair, M.; Ezahri, M.; Benlhachemi, A.; Arab, M.; Bakiz, B.; Guinneton, F.; Gavarri, J. R. (2015). "Rietveld Refinements, Impedance Spectroscopy and Phase Transition of the Polycrystalline ZnMoO4 Ceramics". Ceramics International. 41 (10): 15193–15201. doi:10.1016/j.ceramint.2015.08.094.CS1 maint: multiple names: authors list (link)
  3. G. Etzrodt (2012). "Pigments, Inorganic 5. Anticorrosive Pigments". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.n20_n04.
  4. Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui (2015). "Nanostructured Mo-based electrode materials for electrochemical Energy Storage". Chemical Society Reviews. 44 (8): 2376–404. doi:10.1039/C4CS00350K. PMID 25688809. S2CID 205906132.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.