Weak order unit

In mathematics, specifically in order theory and functional analysis, an element x of a vector lattice X is called a weak order unit in X if x ≥ 0 and for all y in X, inf { x, |y| } = 0 implies y = 0.[1]

Examples

See also

References

  1. Schaefer & Wolff 1999, pp. 234–242.
  2. Schaefer & Wolff 1999, pp. 204–214.

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.