Video Coding Engine

Video Code Engine (VCE, was earlier referred to as Video Coding Engine,[1] Video Compression Engine[2] or Video Codec Engine[3] in official AMD documentation) is AMD's video encoding ASIC implementing the video codec H.264/MPEG-4 AVC. Since 2012 it is integrated into all of their GPUs and APUs except Oland.

Video Coding Engine was introduced with the Radeon HD 7000 Series on 22 December 2011.[4][5][6] VCE occupies a considerable amount of the die surface and is not to be confused with AMD's Unified Video Decoder (UVD).

As of Raven Ridge (released January 2018), VCE has been succeeded by VCN.

Overview

In "full-fixed mode" the entire computation is done by the fixed-function VCE unit. Full-fixed mode can be accessed through the OpenMAX IL API.
The entropy encoding block of the VCE ASIC is also separately accessible, enabling "hybrid mode". In "hybrid mode" most of the computation is done by the 3D engine of the GPU. Using AMD's Accelerated Parallel Programming SDK and OpenCL developers can create hybrid encoders that pair custom motion estimation, inverse discrete cosine transform and motion compensation with the hardware entropy encoding to achieve faster than real-time encoding.

The handling of video data involves computation of data compression algorithms and possibly of video processing algorithms. As the template Compression methods shows, lossy video compression algorithms involve the steps: Motion estimation (ME), Discrete cosine transform (DCT), and entropy encoding (EC).

AMD Video Code Engine (VCE) is a full hardware implementation of the video codec H.264/MPEG-4 AVC. The ASIC is capable of delivering 1080p at 60 frames/sec. Because its entropy encoding block is also a separately accessible Video Codec Engine, it can be operated in two modes: full-fixed mode and hybrid mode.[7][8]

By employing AMD APP SDK, available for Linux and Microsoft Windows, developers can create hybrid encoders that pair custom motion estimation, inverse discrete cosine transform and motion compensation with the hardware entropy encoding to achieve faster than real-time encoding. In hybrid mode, only the entropy encoding block of the VCE unit is used, while the remaining computation is offloaded to the 3D engine (GCN) of the GPU, so the computing scales with the number of available compute units (CUs).

VCE 1.0

As of April 2014, there are two versions of VCE.[1] Version 1.0 supports H.264 YUV420 (I & P frames), H.264 SVC Temporal Encode VCE, and Display Encode Mode (DEM).

It can be found on:

  • Piledriver-based
    • Trinity APUs (Ax-5xxx, e.g. A10-5800K)
    • Richland APUs (Ax-6xxx, e.g. A10-6800K)
  • GPUs of the Southern Islands generation (GCN1: CAYMAN, ARUBA (Trinity/Richland), CAPE VERDE, PITCAIRN, TAHITI). These are
    • Radeon HD 7700 series (except HD 7790 with VCE 2.0)
    • Radeon HD 7800 series
    • Radeon HD 7900 series
    • Radeon HD 8570 to 8990 (except HD 8770 with VCE 2.0)
    • Radeon R7 250E, 250X, 265 / R9 270, 270X, 280, 280X
    • Radeon R7 360, 370, 455 / R9 370, 370X
    • Mobile Radeon HD 77x0M to HD 7970M
    • Mobile Radeon HD 8000-Series
    • Mobile Radeon Rx M2xx Series (except R9 M280X with VCE 2.0 and R9 M295X with VCE 3.0)
    • Mobile Radeon R5 M330 to R9 M390
    • FirePro cards with 1st Generation GCN (GCN1) (Except W2100, which is Oland XT)

VCE 2.0

Compared to the first version, VCE 2.0 adds H.264 YUV444 (I-Frames), B-frames for H.264 YUV420, and improvements to the DEM (Display Encode Mode), which results in a better encoding quality.

It can be found on:

  • Steamroller-based
    • Kaveri APUs (Ax-7xxx, e.g. A10-7850K)
    • Godavari APUs (Ax-7xxx, e.g. A10-7890K)
  • Jaguar-based
    • Kabini APUs (e.g. Athlon 5350, Sempron 2650)
    • Temash APUs (e.g. A6-1450, A4-1200)
  • Puma-based
    • Beema and Mullins
  • GPUs of the Sea Islands generation as well Bonaire or Hawaii GPUs (2nd Generation Graphics Core Next), such as
    • Radeon HD 7790, 8770
    • Radeon R7 260, 260X / R9 290, 290X, 295X2
    • Radeon R7 360 / R9 390, 390X
    • Mobile Radeon R9 M280X
    • Mobile Radeon R9 M385, M385X
    • Mobile Radeon R9 M470, M470X
    • FirePro cards with 2nd Generation GCN (GCN2)

VCE 3.0

Video Code Engine 3.0 (VCE 3.0) technology features a new high-quality video scaling and High Efficiency Video Coding (HEVC/H.265).[9]

It, together with UVD 6.0, can be found on 3rd generation of Graphics Core Next (GCN3) with "Tonga", "Fiji", "Iceland", and "Carrizo" (VCE 3.1) based graphics controller hardware, which is now used AMD Radeon Rx 300 Series (Pirate Islands GPU family) and VCE 3.4 by actual AMD Radeon Rx 400 Series and AMD Radeon 500 Series (both Polaris GPU family).

  • Tonga: Radeon R9 285, 380, 380X; Mobile Radeon R9 M390X, M395, M395X, M485X
  • Tonga XT: FirePro W7100, S7100X, S7150, S7150 X2
  • Fiji: Radeon R9 Fury, Fury X, Nano; Radeon Pro Duo (2016); FirePro S9300, W7170M
  • Polaris: RX 460, 470, 480; RX 550, 560, 570, 580; Radeon Pro Duo (2017)

VCE 4.0

The Video Code Engine 4.0 encoder and UVD 7.0 decoder are included in the Vega-based GPUs.[10][11]

VCE 4.1

AMD's Vega20 GPU, present in the Instinct Mi50, Instinct Mi60 and Radeon VII cards, include VCE 4.1 and two UVD 7.2 instances.[12][13]

APUs

The following table shows features of AMD's APUs (see also: List of AMD accelerated processing units).

CodenameServer Basic Toronto
Micro Kyoto
Desktop Performance Renoir
Mainstream Llano Trinity Richland Kaveri Kaveri Refresh (Godavari) Carrizo Bristol Ridge Raven Ridge Picasso
Entry
Basic Kabini
MobilePerformance Renoir Cezanne
Mainstream Llano Trinity Richland Kaveri Carrizo Bristol Ridge Raven Ridge Picasso
Entry Dalí
Basic Desna, Ontario, Zacate Kabini, Temash Beema, Mullins Carrizo-L Stoney Ridge
Embedded Trinity Bald Eagle Merlin Falcon,
Brown Falcon
Great Horned Owl Grey Hawk Ontario, Zacate Kabini Steppe Eagle, Crowned Eagle,
LX-Family
Prairie Falcon Banded Kestrel
Platform High, standard and low power Low and ultra-low power
ReleasedAug 2011Oct 2012Jun 2013Jan 2014 2015Jun 2015Jun 2016Oct 2017Jan 2019Mar 2020 Jan 2021Jan 2011May 2013Apr 2014May 2015Feb 2016Apr 2019
CPU microarchitecture K10 Piledriver Steamroller Excavator "Excavator+"[14] Zen Zen+ Zen 2 Zen 3 Bobcat Jaguar Puma Puma+[15] "Excavator+" Zen
ISAx86-64x86-64
Socket Desktop High-end N/A
Mainstream N/A FM2+[lower-alpha 1] AM4
Entry FM1 FM2 FM2+[lower-alpha 2] AM1
Basic N/A N/A
Other FS1 FS1+, FP2 FP3 FP4 FP5 FP6 FT1 FT3 FT3b FP4 FP5
PCI Express version 2.0 3.0 4.0 2.0 3.0
Fab. (nm) GF 32SHP
(HKMG SOI)
GF 28SHP
(HKMG bulk)
GF 14LPP
(FinFET bulk)
GF 12LP
(FinFET bulk)
TSMC N7
(FinFET bulk)
TSMC N40
(bulk)
TSMC N28
(HKMG bulk)
GF 28SHP
(HKMG bulk)
GF 14LPP
(FinFET bulk)
Die area (mm2)228246245245250210[16]156 ?75 (+ 28 FCH)107?125149
Min TDP (W)351712104.543.95106
Max APU TDP (W)10095651825
Max stock APU base clock (GHz)33.84.14.13.73.83.63.73.8 ?1.752.222.23.23.3
Max APUs per node[lower-alpha 3]11
Max CPU[lower-alpha 4] cores per APU48242
Max threads per CPU core1212
Integer structure3+32+24+24+2+1 ?1+1+1+12+24+2
i386, i486, i586, CMOV, NOPL, i686, PAE, NX bit, CMPXCHG16B, AMD-V, RVI, ABM, and 64-bit LAHF/SAHF
IOMMU[lower-alpha 5]N/A
BMI1, AES-NI, CLMUL, and F16C N/A
MOVBEN/A
AVIC, BMI2 and RDRAND N/A
ADX, SHA, RDSEED, SMAP, SMEP, XSAVEC, XSAVES, XRSTORS, CLFLUSHOPT, and CLZERON/A N/A
WBNOINVD, CLWB, RDPID, RDPRU, and MCOMMITN/A N/A
FPUs per core10.5110.51
Pipes per FPU22
FPU pipe width128-bit256-bit80-bit128-bit
CPU instruction set SIMD levelSSE4a[lower-alpha 6]AVX AVX2SSSE3AVXAVX2
3DNow!3DNow!+N/A N/A
PREFETCH/PREFETCHW
FMA4, LWP, TBM, and XOPN/AN/A N/AN/A
FMA3
L1 data cache per core (KiB)64163232
L1 data cache associativity (ways)2488
L1 instruction caches per core10.51 10.51
Max APU total L1 instruction cache (KiB)256128192256512 6412896128
L1 instruction cache associativity (ways)2348 234
L2 caches per core10.5110.51
Max APU total L2 cache (MiB)424121
L2 cache associativity (ways)168168
APU total L3 cache (MiB)N/A48 N/A4
APU L3 cache associativity (ways)1616
L3 cache schemeVictimN/AVictimVictim
Max stock DRAM supportDDR3-1866DDR3-2133DDR3-2133, DDR4-2400DDR4-2400DDR4-2933DDR4-3200, LPDDR4-4266 LPDDR4-4266DDR3L-1333DDR3L-1600DDR3L-1866DDR3-1866, DDR4-2400DDR4-2400
Max DRAM channels per APU2 12
Max stock DRAM bandwidth (GB/s) per APU29.86634.13238.40046.93268.256 ?10.66612.80014.93319.20038.400
GPU microarchitectureTeraScale 2 (VLIW5)TeraScale 3 (VLIW4)GCN 2nd genGCN 3rd genGCN 5th gen[17]TeraScale 2 (VLIW5)GCN 2nd genGCN 3rd gen[17]GCN 5th gen
GPU instruction setTeraScale instruction setGCN instruction setTeraScale instruction setGCN instruction set
Max stock GPU base clock (MHz)6008008448661108125014002100 ?538600?8479001200
Max stock GPU base GFLOPS[lower-alpha 7]480614.4648.1886.71134.517601971.22150.4 ?86???345.6460.8
3D engine[lower-alpha 8]Up to 400:20:8Up to 384:24:6Up to 512:32:8Up to 704:44:16[18]Up to 512:32:8 ?80:8:4128:8:4Up to 192:?:?Up to 192:?:?
IOMMUv1IOMMUv2 IOMMUv1?IOMMUv2
Video decoderUVD 3.0UVD 4.2UVD 6.0VCN 1.0[19]VCN 2.0[20]UVD 3.0UVD 4.0UVD 4.2UVD 6.0UVD 6.3VCN 1.0
Video encoderN/AVCE 1.0VCE 2.0VCE 3.1N/AVCE 2.0VCE 3.1
AMD Fluid Motion
GPU power savingPowerPlayPowerTunePowerPlayPowerTune[21]
TrueAudioN/A[22] N/A
FreeSync1
2
1
2
HDCP[lower-alpha 9]?1.41.4
2.2
?1.41.4
2.2
PlayReady[lower-alpha 9]N/A3.0 not yetN/A3.0 not yet
Supported displays[lower-alpha 10]2–32–433 (desktop)
4 (mobile, embedded)
4234
/drm/radeon[lower-alpha 11][24][25]N/A N/A
/drm/amdgpu[lower-alpha 11][26]N/A[27] N/A[27]
  1. For FM2+ Excavator models: A8-7680, A6-7480 & Athlon X4 845.
  2. For FM2+ Excavator models: A8-7680, A6-7480 & Athlon X4 845.
  3. A PC would be one node.
  4. An APU combines a CPU and a GPU. Both have cores.
  5. Requires firmware support.
  6. No SSE4. No SSSE3.
  7. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  8. Unified shaders : texture mapping units : render output units
  9. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  10. To feed more than two displays, the additional panels must have native DisplayPort support.[23] Alternatively active DisplayPort-to-DVI/HDMI/VGA adapters can be employed.
  11. DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

GPUs

The following table shows features of AMD's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands/Polaris
Vega Navi Big Navi
Released 1986 1991 1996 1997 1998 Apr 2000 Aug 2001 Sep 2002 May 2004 Oct 2005 May 2007 Nov 2007 Jun 2008 Sep 2009 Oct 2010 Jan 2012 Sep 2013 Jun 2015 Jun 2016 Jun 2017 Jul 2019 Nov 2020
Marketing Name Wonder Mach 3D Rage Rage Pro Rage Radeon 7000 Radeon 8000 Radeon 9000 Radeon X700/X800 Radeon X1000 Radeon HD 2000 Radeon HD 3000 Radeon HD 4000 Radeon HD 5000 Radeon HD 6000 Radeon HD 7000 Radeon Rx 200 Radeon Rx 300 Radeon RX 400/500 Radeon RX Vega/Radeon VII(7nm) Radeon RX 5000 Radeon RX 6000
AMD support
Kind 2D 3D
Instruction set Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1 TeraScale 2 (VLIW5) TeraScale 3 (VLIW4) GCN 1st gen GCN 2nd gen GCN 3rd gen GCN 4th gen GCN 5th gen RDNA RDNA 2
Type Fixed pipeline[lower-alpha 1] Programmable pixel & vertex pipelines Unified shader model
Direct3D N/A 5.0 6.0 7.0 8.1 9.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0) 11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
11 (12_2)
12 (12_2)
Shader model N/A 1.4 2.0+ 2.0b 3.0 4.0 4.1 5.0 5.1 5.1
6.3
6.4 6.5
OpenGL N/A 1.1 1.2 1.3 2.0[lower-alpha 2] 3.3 4.5 (on Linux + Mesa 3D: 4.5 with FP64 HW support, 4.3 without)[28][29][30][lower-alpha 3] 4.6 (on Linux: 4.6 (Mesa 20.0))
Vulkan N/A 1.0
(Win 7+ or Mesa 17+)
1.2 (Adrenalin 20.1, Linux Mesa 20.0)
OpenCL N/A Close to Metal 1.1 1.2 2.0 (Adrenalin driver on Win7+)
(on Linux: 1.2 with Mesa 3D, 2.1 with AMD drivers or AMD ROCm)
? 2.1 [31]
HSA N/A ?
Video decoding ASIC N/A Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7[10][lower-alpha 4] VCN 2.0[10][lower-alpha 4] VCN 3.0[32]
Video encoding ASIC N/A VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0[10][lower-alpha 4]
Fluid Motion
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio N/A Via dedicated DSP Via shaders ?
FreeSync N/A 1
2
HDCP[lower-alpha 5] ? 1.4 1.4
2.2
1.4
2.2
2.3
?
PlayReady[lower-alpha 5] N/A 3.0 3.0 ?
Supported displays[lower-alpha 6] 1–2 2 2–6 ?
Max. resolution ? 2–6 ×
2560×1600
2–6 ×
4096×2160 @ 60 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz[33]
?
/drm/radeon[lower-alpha 7] N/A
/drm/amdgpu[lower-alpha 7] N/A Experimental[34]
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. These series do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  6. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  7. DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

Operating system support

The VCE SIP core needs to be supported by the device driver. The device driver provides one or multiple interfaces, e. g. OpenMAX IL. One of these interfaces is then used by end-user software, like GStreamer or HandBrake (HandBrake rejected VCE support in December 2016,[35] but added it in December 2018[36]), to access the VCE hardware and make use of it.

AMD's proprietary device driver AMD Catalyst is available for multiple operating systems and support for VCE has been added to it. Additionally, a free device driver is available. This driver also supports the VCE hardware.

Linux

Support for the VCE ASIC is contained in the Linux kernel device driver amdgpu.

Windows

The software "MediaShow Espresso Video Transcoding" seems to utilize VCE and UVD to the fullest extent possible.[41]

XSplit Broadcaster supports VCE from version 1.3.[42]

Open Broadcaster Software (OBS Studio) supports VCE for recording and streaming. The original Open Broadcaster Software (OBS) requires a fork build in order to enable VCE.[43]

AMD Radeon Software supports VCE with built in game capture ("Radeon ReLive") and use AMD AMF/VCE on APU or Radeon Graphics card to reduce FPS drop when capturing game or video content.[44]

HandBrake added Video Coding Engine support in version 1.2.0 in December 2018.[36]

Successor

The VCE was succeeded by AMD Video Core Next in the Raven Ridge series of APUs released in October 2017. The VCN combines both encode (VCE) and decode (UVD).[45]

See also

References

  1. https://web.archive.org/web/20160604071338/http://developer.amd.com/community/blog/2014/02/19/introducing-video-coding-engine-vce/
  2. https://www.amd.com/en/media/43876/download
  3. https://subscriptions.amd.com/newsletters/channelnews/pdf_guides/51884i_update_to_the_qrg_october2014.pdf
  4. "White Paper AMD UnifiedVideoDecoder (UVD)" (PDF). 2012-06-15. Retrieved 2017-05-20.
  5. "AnandTech Portal | AMD Radeon HD 7970 Review: 28nm And Graphics Core Next, Together As One". Anandtech.com. Retrieved 2014-03-27.
  6. "AMD's Radeon HD 7970 graphics processor - The Tech Report - Page 5". The Tech Report. Retrieved 2014-03-27.
  7. "Video & Movies: The Video Codec Engine, UVD3, & Steady Video 2.0". AnandTech. December 22, 2011. Retrieved 2017-05-20.
  8. "Radeon HD 8900 Specs". AMD. Retrieved 2016-07-18.
  9. https://lists.freedesktop.org/archives/dri-devel/2015-June/084083.html [pull] amdgpu drm-next-4.2
  10. Killian, Zak (22 March 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved 23 March 2017.
  11. Larabel, Michael (20 March 2017). "AMD Sends Out 100 Patches, Enabling Vega Support In AMDGPU DRM". Phoronix. Retrieved 25 August 2017.
  12. Deucher, Alex (15 May 2018). "[PATCH 50/57] drm/amdgpu/vg20:Enable the 2nd instance IRQ for uvd 7.2". Retrieved 2019-01-13.
  13. Deucher, Alex (15 May 2018). "[PATCH 42/57] drm/amd/include/vg20: adjust VCE_BASE to reuse vce 4.0 header files". Retrieved 2019-01-13.
  14. "AMD Announces the 7th Generation APU: Excavator mk2 in Bristol Ridge and Stoney Ridge for Notebooks". 31 May 2016. Retrieved 3 January 2020.
  15. "AMD Mobile "Carrizo" Family of APUs Designed to Deliver Significant Leap in Performance, Energy Efficiency in 2015" (Press release). 20 November 2014. Retrieved 16 February 2015.
  16. "The Mobile CPU Comparison Guide Rev. 13.0 Page 5 : AMD Mobile CPU Full List". TechARP.com. Retrieved 13 December 2017.
  17. "AMD VEGA10 and VEGA11 GPUs spotted in OpenCL driver". VideoCardz.com. Retrieved 6 June 2017.
  18. Cutress, Ian (1 February 2018). "Zen Cores and Vega: Ryzen APUs for AM4 – AMD Tech Day at CES: 2018 Roadmap Revealed, with Ryzen APUs, Zen+ on 12nm, Vega on 7nm". Anandtech. Retrieved 7 February 2018.
  19. Larabel, Michael (17 November 2017). "Radeon VCN Encode Support Lands in Mesa 17.4 Git". Phoronix. Retrieved 20 November 2017.
  20. Liu, Leo (2020-09-04). "Add Renoir VCN decode support". Retrieved 2020-09-11. It has same VCN2.x block as Navi1x
  21. Tony Chen; Jason Greaves, "AMD's Graphics Core Next (GCN) Architecture" (PDF), AMD, retrieved 13 August 2016
  22. "A technical look at AMD's Kaveri architecture". Semi Accurate. Retrieved 6 July 2014.
  23. "How do I connect three or More Monitors to an AMD Radeon™ HD 5000, HD 6000, and HD 7000 Series Graphics Card?". AMD. Retrieved 8 December 2014.
  24. Airlie, David (26 November 2009). "DisplayPort supported by KMS driver mainlined into Linux kernel 2.6.33". Retrieved 16 January 2016.
  25. "Radeon feature matrix". freedesktop.org. Retrieved 10 January 2016.
  26. Deucher, Alexander (16 September 2015). "XDC2015: AMDGPU" (PDF). Retrieved 16 January 2016.
  27. Michel Dänzer (17 November 2016). "[ANNOUNCE] xf86-video-amdgpu 1.2.0". lists.x.org.
  28. "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.
  29. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  30. "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.
  31. "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved 1 January 2021.
  32. Larabel, Michael (15 September 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved 1 January 2021.
  33. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on 2018-09-06. Retrieved 13 June 2017.
  34. Larabel, Michael (7 December 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved 7 December 2016.
  35. "HandBrake rejected VCE pull request". 2016-12-08. Retrieved 2017-08-15.
  36. "HandBrake added VCE support in v1.2.0". 2018-12-22. Retrieved 2018-12-31.
  37. König, Christian (4 February 2014). "initial VCE support". mesa-dev (Mailing list). Retrieved 28 November 2015.
  38. König, Christian (24 October 2013). "OpenMAX state tracker". mesa-dev (Mailing list). Retrieved 28 November 2015.
  39. "AMD Open-Sources VCE Video Encode Engine Code". Phoronix. 2014-02-04. Retrieved 2017-05-20.
  40. "st/omx/enc: implement h264 level support". 2014-06-12. Retrieved 2017-05-20.
  41. "MediaShow Espresso Video Transcoding Benchmark". 2014-01-14. Retrieved 2017-05-20.
  42. "XSplit Broadcaster 1.3 maintenance update includes mainly performance enhancements and maintenance fixes including such noteworthy features such as support for AMD's VCE H.264 hardware encoder". Archived from the original on 2014-07-22.
  43. "OBS branch with AMD VCE support". May 2, 2014. Retrieved 2017-05-20.
  44. "Radeon Software Crimson ReLive Edition 16.12.1 Release Notes". Retrieved 2017-05-20.
  45. Larabel, Michael (17 November 2017). "Radeon VCN Encode Support Lands In Mesa 17.4 Git". Phoronix. Retrieved 20 November 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.