Redmond–Sun conjecture
In mathematics, the Redmond–Sun conjecture, raised by Stephen Redmond and Zhi-Wei Sun in 2006, states that every interval [x m, y n] with x, y, m, n ∈ {2, 3, 4, ...} and x m ≠ y n contains primes with only finitely many exceptions. Namely, those exceptional intervals [x m, y n] are as follows:
The conjecture has been verified for intervals [x m, y n] with endpoints below 4.5 x 1018. It includes Catalan's conjecture and Legendre's conjecture as special cases. Also, it is related to the abc conjecture as suggested by Carl Pomerance.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.