Quasi-open map

In topology a branch of mathematics, a quasi-open map or quasi-interior map is a function which has similar properties to continuous maps. However, continuous maps and quasi-open maps are not related.[1]

Definition

A function f : XY between topological spaces X and Y is quasi-open if, for any non-empty open set UX, the interior of f ('U) in Y is non-empty.[1][2]

Properties

Let f : XY be a map between topological spaces.

  • If f is continuous, it need not be quasi-open. Conversely if is quasi-open, it need not be continuous.[1]
  • If f is open, then f is quasi-open.[1]
  • If f is a local homeomorphism, then f is quasi-open.[1]
  • The composition of two quasi-open maps is again quasi-open.[note 1][1]

See also

Notes

  1. This means that if f : XY and g : YZ are both quasi-open (such that all spaces are topological), then the function composition gf : XZ is quasi-open.

References

  1. Kim, Jae Woon (1998). "A Note on Quasi-Open Maps" (PDF). Journal of the Korean Mathematical Society. B: The Pure and Applied Mathematics. 5 (1): 1–3. Archived from the original (pdf) on March 4, 2016. Retrieved October 20, 2011.
  2. Blokh, A.; Oversteegen, L.; Tymchatyn, E.D. (2006). "On almost one-to-one maps". Trans. Amer. Math. Soc. 358: 5003–5015. doi:10.1090/s0002-9947-06-03922-5.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.