Phase-change material

A phase change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat/cooling. Generally the transition will be from one of the first two fundamental states of matter - solid and liquid - to the other. The phase transition may also be between non-classical states of matter, such as the conformity of crystals, where the material goes from conforming to one crystalline structure to conforming to another, which may be a higher or lower energy state.

A sodium acetate heating pad. When the sodium acetate solution crystallises, it becomes warm.

The energy released/absorbed by phase transition from solid to liquid, or vice versa, the heat of fusion is generally much higher than the sensible heat. Ice, for example, requires 333.55 J/g to melt, but then water will rise one degree further with the addition of just 4.18 J/g. Water/ice is therefore a very useful phase change material and has been used to store winter cold to cool buildings in summer since at least the time of the Achaemenid Empire.

By melting and solidifying at the phase change temperature (PCT), a PCM is capable of storing and releasing large amounts of energy compared to sensible heat storage. Heat is absorbed or released when the material changes from solid to liquid and vice versa or when the internal structure of the material changes; PCMs are accordingly referred to as latent heat storage (LHS) materials.

There are two principal classes of phase change material: organic (carbon-containing) materials derived either from petroleum, from plants or from animals; and salt hydrates, which generally either use natural salts from the sea or from mineral deposits or are by-products of other processes. A third class is solid to solid phase change.

PCMs are used in many different commercial applications where energy storage and/or stable temperatures are required, including, among others, heating pads, cooling for telephone switching boxes, and clothing.

By far the biggest potential market is for building heating and cooling. PCMs are currently attracting a lot of attention for this application due to the progressive reduction in the cost of renewable electricity, coupled with limited hours of availability, resulting in a misfit between peak demand and availability of supply. In North America, China, Japan, Australia, Southern Europe and other developed countries with hot summers peak supply is at midday while peak demand is from around 17:00 to 20:00. This creates a lot of demand for storage media.

Solid-liquid phase change materials are usually encapsulated for installation in the end application, to contain in the liquid state. In some applications, especially when incorporation to textiles is required, phase change materials are micro-encapsulated. Micro-encapsulation allows the material to remain solid, in the form of small bubbles, when the PCM core has melted.

Characteristics and classification

Latent heat storage can be achieved through changes in the State of matter from liquid→solid, solid→liquid, solid→gas and liquid→gas. However, only solid→liquid and liquid→solid phase changes are practical for PCMs. Although liquid–gas transitions have a higher heat of transformation than solid–liquid transitions, liquid→gas phase changes are impractical for thermal storage because large volumes or high pressures are required to store the materials in their gas phase. Solid–solid phase changes are typically very slow and have a relatively low heat of transformation.

Initially, solid–liquid PCMs behave like sensible heat storage (SHS) materials; their temperature rises as they absorb heat. Unlike conventional SHS materials, however, when PCMs reach their phase change temperature (their melting point) they absorb large amounts of heat at an almost constant temperature until all the material is melted. When the ambient temperature around a liquid material falls, the PCM solidifies, releasing its stored latent heat. A large number of PCMs are available in any required temperature range from −5 up to 190 °C.[1] Within the human comfort range between 20 and 30 °C, some PCMs are very effective, storing over 200 kJ/kg of latent heat, as against a specific heat capacity of around one kJ/(kg*°C) for masonry. The storage density can therefore be 20 times greater than masonry per kg if an temperature swing of 10 °C is allowed. [2] However, since the mass of the masonry is far higher than that of PCM this specific (per mass) heat capacity is somewhat offset. A masonry wall might have a mass of 200 kg/m2, so to double the heat capacity one would require additional 10 kg/m2 of PCM.

[3] Example Organic Bio-based PCM in a poly/foil encapsulation for durability in building applications, where it works to reduce HVAC energy consumption and increase occupant comfort.

Organic PCMs

Hydrocarbons, primarily paraffins (CnH2n+2) and lipids but also sugar alcohols.[4][5][6]

  • Advantages
    • Freeze without much supercooling
    • Ability to melt congruently
    • Self nucleating properties
    • Compatibility with conventional material of construction
    • No segregation
    • Chemically stable
    • Safe and non-reactive
  • Disadvantages
    • Low thermal conductivity in their solid state. High heat transfer rates are required during the freezing cycle. Nano composites were found to yield an effective thermal conductivity increase up to 216%.[7][8]
    • Volumetric latent heat storage capacity can be low
    • Flammable. This can be partially alleviated by specialised containment.

Inorganic

Salt hydrates (MxNyH2O) [9]

  • Advantages
    • High volumetric latent heat storage capacity
    • Availability and low cost
    • Sharp melting point
    • High thermal conductivity
    • High heat of fusion
    • Non-flammable
  • Disadvantages
    • Difficult to prevent incongruous melting and phase separation upon cycling, which can cause a significant loss in latent heat enthalpy.[10]
    • Corrosive to many other materials, such as metals.[11][12][13] This can be overcome by encapsulation in small quantities in non-reactive plastic.
    • Change of volume is very high in some mixtures
    • Super cooling can be a problem in solid–liquid transition, necessitating the use of nucleating agents which may become inoperative after repeated cycling
      Example: eutectic salt hydrate PCM with nucleation and gelling agents for long-term thermal stability and thermoplastic foil macro-encapsulation physical durability. Applied for passive temperature stabilization to result in building HVAC energy conservation.[14]

Hygroscopic materials

Many natural building materials are hygroscopic, that is they can absorb (water condenses) and release water (water evaporates). The process is thus:

  • Condensation (gas to liquid) ΔH<0; enthalpy decreases (exothermic process) gives off heat.
  • Vaporization (liquid to gas) ΔH>0; enthalpy increases (endothermic process) absorbs heat (or cools).

Whilst this process liberates a small quantity of energy, large surfaces area allows significant (1–2 °C) heating or cooling in buildings. The corresponding materials are wool insulation and earth/clay render finishes.

Solid-solid PCMs

A specialised group of PCMs that undergo a solid/solid phase transition with the associated absorption and release of large amounts of heat. These materials change their crystalline structure from one lattice configuration to another at a fixed and well-defined temperature, and the transformation can involve latent heats comparable to the most effective solid/liquid PCMs. Such materials are useful because, unlike solid/liquid PCMs, they do not require nucleation to prevent supercooling. Additionally, because it is a solid/solid phase change, there is no visible change in the appearance of the PCM, and there are no problems associated with handling liquids, e.g. containment, potential leakage, etc. Currently the temperature range of solid-solid PCM solutions spans from -50 °C (-58 °F) up to +175 °C (347 °F).[15]

Selection criteria

The phase change material should possess the following thermodynamic properties:[16]

  • Melting temperature in the desired operating temperature range
  • High latent heat of fusion per unit volume
  • High specific heat, high density, and high thermal conductivity
  • Small volume changes on phase transformation and small vapor pressure at operating temperatures to reduce the containment problem
  • Congruent melting
  • Kinetic properties
  • High nucleation rate to avoid supercooling of the liquid phase
  • High rate of crystal growth, so that the system can meet demands of heat recovery from the storage system
  • Chemical properties
  • Chemical stability
  • Complete reversible freeze/melt cycle
  • No degradation after a large number of freeze/melt cycle
  • Non-corrosiveness, non-toxic, non-flammable and non-explosive materials
  • Economic properties
  • Low cost
  • Availability

Thermophysical properties

Common PCMs

Material Organic
PCM
Melting
point, Tm
Heat of
fusion, ΔHfus

kJ/kg
Heat of
fusion, ΔHfus

MJ/m3
Specific
heat, cp

solid
kJ/kg·K
Specific
heat, cp

liquid
kJ/kg·K
Density, ρ
solid
kg/m3
Density, ρ
liquid
kg/m3
Thermal
conductivity, k

solid
W/m·K
Thermal
conductivity, k

liquid
W/m·K
VHC
solid
kJ/m3·K
VHC
liquid
kJ/m3·K
Thermal
effusivity, e

solid
J/m2·K·s1/2
Cost
USD/kg
WaterNo 0 °C (32 °F)333.6319.82.054.1869171,0001.6[17]-2.22[18] 1,8804,1861,8900.001[19]
Sodium sulfate (Na2SO4·10H2O)No32.4 °C (90.3 °F)252 0.05[20]
NaCl·Na2SO4·10H2ONo18 °C (64 °F)286 0.05[20]
Lauric acidYes[21][22] 44.2 °C (111.6 °F)[23]211.6197.71.762.271,007862 1,7721,9571.60[24][25]
TME(63%) / H2O(37%)Yes[21][22] 29.8 °C (85.6 °F)218.0240.92.753.581,1201,090 3,0803,902
Mn(NO3)2·6H2O / MnCl2·4H2O(4%)No[26][27] 15–25 °C (59–77 °F)125.9221.82.342.781,7951,728 4,2004,804
Na2SiO3·5H2ONo[26][27] 72.2 °C (162.0 °F)267.0364.53.834.571,4501,2800.103−0.128[28] 5,5545,8508018.04[29]
AluminiumNo 660 °C (1,220 °F)396.91,007.20.89692,7002,375237[30][31] 2,422?23,9602.05[32]
CopperNo 1,085 °C (1,985 °F)208.71,769.50.38468,9408,020401[33] 3,438?37,1306.81[34]
GoldNo 1,064 °C (1,947 °F)63.721,166.30.12919,30017,310318[35] 2,49128,14034,298[34]
IronNo 1,538 °C (2,800 °F)247.31,836.60.44957,8746,98080.4[36] 3,53916,8700.324[37]
LeadNo 327 °C (621 °F)23.02253.20.128611,34010,66035.3[38] 1,4597,1802.115[34]
LithiumNo 181 °C (358 °F)432.2226.03.581653451284.8[39] 1,91312,74062.22[40]
SilverNo 962 °C (1,764 °F)104.61,035.80.23510,4909,320429[41] 2,46532,520493[34]
TitaniumNo 1,668 °C (3,034 °F)295.61,273.50.52354,5064,11021.9[42] 2,3597,1908.05[43]
ZincNo 420 °C (788 °F)112.0767.50.38967,1406,570116[44] 2,78217,9602.16[34]
NaNO
3
No310 °C (590 °F)174 [45]
NaNO
2
No282 °C (540 °F)212 [45]
NaOHNo318 °C (604 °F)158 [45]
KNO
3
No337 °C (639 °F)116 [45]
KOHNo360 °C (680 °F)167 [45]
NaOH / Na
2
CO
3
(7.2%)
No283 °C (541 °F)340 [45]
NaCl(26.8%) / NaOHNo370 °C (698 °F)370 [45]
NaCl / KCL(32.4%) / LiCl(32.8%)No346 °C (655 °F)281 [45]
NaCl(5.7%) / NaNO
3
(85.5%) / Na
2
SO
4
No287 °C (549 °F)176 [45]
NaCl / NaNO
3
(5.0%)
No284 °C (543 °F)171 [45]
NaCl(5.0%) / NaNO
3
No282 °C (540 °F)212 [45]
NaCl(42.5%) / KCl(20.5%) / MgCl
2
No385–393 °C (725–739 °F)410 [45]
KNO
3
(10%) / NaNO
3
No290 °C (554 °F)170 [45]
KNO
3
/ KCl(4.5%)
No320 °C (608 °F)150 [45]
KNO
3
/ KBr(4.7%) / KCl(7.3%)
No342 °C (648 °F)140 [45]
Paraffin 14-Carbons[46] Yes 5.5 °C (41.9 °F) 228
Paraffin 15-Carbons[46] Yes 10 °C (50 °F) 205
Paraffin 16-Carbons[46] Yes 16.7 °C (62.1 °F) 237.1
Paraffin 17-Carbons[46] Yes 21.7 °C (71.1 °F) 213
Paraffin 18-Carbons[46] Yes 28 °C (82 °F) 244
Paraffin 19-Carbons[46] Yes 32 °C (90 °F) 222
Paraffin 20-Carbons[46] Yes 36.7 °C (98.1 °F) 246
Paraffin 21-Carbons[46] Yes 40.2 °C (104.4 °F) 200
Paraffin 22-Carbons[46] Yes 44 °C (111 °F) 249
Paraffin 23-Carbons[46] Yes 47.5 °C (117.5 °F) 232
Paraffin 24-Carbons[46] Yes 50.6 °C (123.1 °F) 255
Paraffin 25-Carbons[46] Yes 49.4 °C (120.9 °F) 238
Paraffin 26-Carbons[46] Yes 56.3 °C (133.3 °F) 256
Paraffin 27-Carbons[46] Yes 58.8 °C (137.8 °F) 236
Paraffin 28-Carbons[46] Yes 61.6 °C (142.9 °F) 253
Paraffin 29-Carbons[46] Yes 63.4 °C (146.1 °F) 240
Paraffin 30-Carbons[46] Yes 65.4 °C (149.7 °F) 251
Paraffin 31-Carbons[46] Yes 68 °C (154 °F) 242
Paraffin 32-Carbons[46] Yes 69.5 °C (157.1 °F) 170
Paraffin 33-Carbons[46] Yes 73.9 °C (165.0 °F) 268
Paraffin 34-Carbons[46] Yes 75.9 °C (168.6 °F) 269
Formic acid[46] Yes 7.8 °C (46.0 °F) 247
Caprilic acid[46] Yes 16.3 °C (61.3 °F) 149
Glycerin[46] Yes 17.9 °C (64.2 °F) 198.7
p-Lattic acid[46] Yes 26 °C (79 °F) 184
Methyl palmitate[46] Yes 29 °C (84 °F) 205
Camphenilone[46] Yes 39 °C (102 °F) 205
Docasyl bromide[46] Yes 40 °C (104 °F) 201
Caprylone[46] Yes 40 °C (104 °F) 259
Phenol[46] Yes 41 °C (106 °F) 120
Heptadecanone[46] Yes 41 °C (106 °F) 201
1-Cyclohexylooctadecane[46] Yes 41 °C (106 °F) 218
4-Heptadacanone[46] Yes 41 °C (106 °F) 197
p-Joluidine[46] Yes 43.3 °C (109.9 °F) 167
Cyanamide[46] Yes 44 °C (111 °F) 209
Methyl eicosanate[46] Yes 45 °C (113 °F) 230
3-Heptadecanone[46] Yes 48 °C (118 °F) 218
2-Heptadecanone[46] Yes 48 °C (118 °F) 218
Hydrocinnamic acid[46] Yes 48 °C (118 °F) 118
Cetyl acid[46] Yes 49.3 °C (120.7 °F) 141
a-Nepthylamine[46] Yes 59 °C (138 °F) 93
Camphene[46] Yes 50 °C (122 °F) 238
O-Nitroaniline[46] Yes 50 °C (122 °F) 93
9-Heptadecanone[46] Yes 51 °C (124 °F) 213
Thymol[46] Yes 51.5 °C (124.7 °F) 115
Methyl behenate[46] Yes 52 °C (126 °F) 234
Diphenyl amine[46] Yes 52.9 °C (127.2 °F) 107
p-Dichlorobenzene[46] Yes 53.1 °C (127.6 °F) 121
Oxolate[46] Yes 54.3 °C (129.7 °F) 178
Hypophosphoric acid[46] Yes 55 °C (131 °F) 213
O-Xylene dichloride[46] Yes 55 °C (131 °F) 121
ß-Chloroacetic acid[46] Yes 56 °C (133 °F) 147
Chloroacetic acid[46] Yes 56 °C (133 °F) 130
Nitro naphthalene[46] Yes 56.7 °C (134.1 °F) 103
Trimyristin[46] Yes 33 °C (91 °F) 201
Heptaudecanoic acid[46] Yes 60.6 °C (141.1 °F) 189
a-Chloroacetic acid[46] Yes 61.2 °C (142.2 °F) 130
Bees wax[46] Yes 61.8 °C (143.2 °F) 177
Glyolic acid[46] Yes 63 °C (145 °F) 109
Glycolic acid[46] Yes 63 °C (145 °F) 109
p-Bromophenol[46] Yes 63.5 °C (146.3 °F) 86
Azobenzene[46] Yes 67.1 °C (152.8 °F) 121
Acrylic acid[46] Yes 68 °C (154 °F) 115
Dinto toluent (2,4)[46] Yes 70 °C (158 °F) 111
Phenylacetic acid[46] Yes 76.7 °C (170.1 °F) 102
Thiosinamine[46] Yes 77 °C (171 °F) 140
Bromcamphor[46] Yes 77 °C (171 °F) 174
Durene[46] Yes 79.3 °C (174.7 °F) 156
Methyl bromobenzoate[46] Yes 81 °C (178 °F) 126
Alpha napthol[46] Yes 96 °C (205 °F) 163
Glautaric acid[46] Yes 97.5 °C (207.5 °F) 156
p-Xylene dichloride[46] Yes 100 °C (212 °F) 138.7
Catechol[46] Yes 104.3 °C (219.7 °F) 207
Quinone[46] Yes 115 °C (239 °F) 171
Actanilide[46] Yes 118.9 °C (246.0 °F) 222
Succinic anhydride[46] Yes 119 °C (246 °F) 204
Benzoic acid[46] Yes 121.7 °C (251.1 °F) 142.8
Stibene[46] Yes 124 °C (255 °F) 167
Benzamide[46] Yes 127.2 °C (261.0 °F) 169.4
Acetic acid[46] Yes 16.7 °C (62.1 °F) 184
Polyethylene glycol 600[46] Yes 20 °C (68 °F) 146
Capric acid[46] Yes 36 °C (97 °F) 152
Eladic acid[46] Yes 47 °C (117 °F) 218
Pentadecanoic acid[46] Yes 52.5 °C (126.5 °F) 178
Tristearin[46] Yes 56 °C (133 °F) 191
Myristic acid[46] Yes 58 °C (136 °F) 199
Palmatic acid[46] Yes 55 °C (131 °F) 163
Stearic acid[46] Yes 69.4 °C (156.9 °F) 199
Acetamide[46] Yes 81 °C (178 °F) 241
Methyl fumarate[46] Yes 102 °C (216 °F) 242

Volumetric heat capacity (VHC) J·m−3·K−1

Thermal inertia (I) = Thermal effusivity (e) J·m−2·K−1·s−1/2

Commercially available PCMs

Material Supplier Type Form Melting
point, Tm
Heat of
fusion, ΔHfus

kJ/kg
Density, ρ
solid
kg/m3
Density, ρ
liquid
kg/m3
Thermal
conductivity, k

solid
W/m·K
Thermal
conductivity, k

liquid
W/m·K
Specific heat, cp
solid
kJ/kg·K
Specific heat, cp
liquid
kJ/kg·K
ATS -35 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -35 °C (-31 °F) 290
ATS -33 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -33 °C (-27 °F) 300
ATS -23 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -23 °C (-9 °F) 300
ATS -21 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -21 °C (-6 °F) 320
ATS -16 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -16 °C (3 °F) 380
ATS -12 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -12 °C (10 °F) 360
ATS -6 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -6 °C (21 °F) 360
ATS -3 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated -3 °C (27 °F) 330
ATP 2 Axiotherm GmbH Organic Bulk, Macro-encapsulated 2 °C (36 °F) 225
ATP 4 Axiotherm GmbH Organic Bulk, Macro-encapsulated 4 °C (39 °F) 270
ATP 6 Axiotherm GmbH Organic Bulk, Macro-encapsulated 6 °C (43 °F) 275
ATP 12 Axiotherm GmbH Organic Bulk, Macro-encapsulated 12 °C (54 °F) 245
ATS 13 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 13 °C (55 °F) 210
ATP 16 Axiotherm GmbH Organic Bulk, Macro-encapsulated 16 °C (61 °F) 245
ATP 18 Axiotherm GmbH Organic Bulk, Macro-encapsulated 18 °C (64 °F) 270
ATP 20 Axiotherm GmbH Organic Bulk, Macro-encapsulated 20 °C (68 °F) 220
ATP 23 Axiotherm GmbH Organic Bulk, Macro-encapsulated 23 °C (73 °F) 230
ATP 28 Axiotherm GmbH Organic Bulk, Macro-encapsulated 28 °C (82 °F) 265
ATS 30 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 30 °C (86 °F) 200
ATP 36 Axiotherm GmbH Organic Bulk, Macro-encapsulated 36 °C (97 °F) 240
ATS 43 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 43 °C (109 °F) 230
ATS 50 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 50 °C (122 °F) 230
ATP 52 Axiotherm GmbH Organic Bulk, Macro-encapsulated 52 °C (126 °F) 230
ATS 58 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 58 °C (136 °F) 240
ATP 60 Axiotherm GmbH Organic Bulk, Macro-encapsulated 60 °C (140 °F) 230
ATP 70 Axiotherm GmbH Organic Bulk, Macro-encapsulated 70 °C (158 °F) 250
ATP 78 Axiotherm GmbH Organic Bulk, Macro-encapsulated 78 °C (172 °F) 225
ATS 84 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 84 °C (183 °F) 145
ATS 89 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 89 °C (192 °F) 145
ATS 115 Axiotherm GmbH Inorganic Bulk, Macro-encapsulated 115 °C (239 °F) 160
CrodaTherm -22 Croda[47] Bio-based Organic Bulk -22.0 °C

-7.6 °F

157 903 887
CrodaTherm 5 Croda[47] Bio-based Organic Bulk 5.0 °C

41.0 °F

41 °F

191 870 924
CrodaTherm 6.5 Croda[47] Bio-based Organic Bulk 6.5 °C

43.7 °F

184 857 921
CrodaTherm 9.5 Croda[47] Bio-based Organic Bulk 9.5 °C

49.1 °F

186 858 963
CrodaTherm 15 Croda[47] Bio-based Organic Bulk 15.0 °C

59.0 °F

177 859 896
CrodaTherm 19 Croda[47] Bio-based Organic Bulk 19.0 °C

66.2 °F

175 854
CrodaTherm 21 Croda[47] Bio-based Organic Bulk 21.0 °C

69.8 °F

190 850 891
CrodaTherm 24 Croda[47] Bio-based Organic Bulk 24.0 °C

75.2 °F

183 842 949
CrodaTherm 24W Croda[47] Bio-based Organic Bulk 24.0 °C

75.2 °F

184 842
CrodaTherm 29 Croda[47] Bio-based Organic Bulk 29.0 °C

84.2 °F

207 851 917
CrodaTherm 32 Croda[47] Bio-based Organic Bulk 32.0 °C

89.6 °F

190 836 916
CrodaTherm 37 Croda[47] Bio-based Organic Bulk 37.0 °C

98.6 °F

204 841 957
CrodaTherm 53 Croda[47] Bio-based Organic Bulk 53.0 °C

127.4 °F

226 829 904
CrodaTherm 60 Croda[47] Bio-based Organic Bulk 60.0 °C

140.0 °F

217
CrodaTherm ME29P Croda[47] Bio-based Organic Micro-encapsulated Powder 29.4 °C

84.9 °F

183
CrodaTherm ME29D Croda[47] Bio-based Organic Micro-encapsulated Dispersion 50% w/w 29.4 °C

84.9 °F

183
0100- Q-50 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −50 °C (−58 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-45 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −45 °C (−49 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-40 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −40 °C (−40 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-35 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −35 °C (−31 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-30 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −30 °C (−22 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-27 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −27 °C (−17 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-25 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −25 °C (−13 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-22 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −22 °C (−8 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-20 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −20 °C (−4 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-15 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −15 °C (5 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-10 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −10 °C (14 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0100- Q-05 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated −5 °C (23 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0200- Q1 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 1 °C (34 °F) 325 910 980 1.1 0.58 4.2 4.1
0200- Q2 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 2 °C (36 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0200- Q4 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 4 °C (39 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0200- Q5 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 5 °C (41 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0200- Q6 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 6 °C (43 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0200- Q8 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 8 °C (46 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0300- Q10 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 10 °C (50 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0300- Q12 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 12 °C (54 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0300- Q14 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 14 °C (57 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q15 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 15 °C (59 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q16 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 16 °C (61 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q17 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 17 °C (63 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q18 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 18 °C (64 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q19 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 19 °C (66 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q20 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 20 °C (68 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q21 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 21 °C (70 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q22 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 22 °C (72 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q23 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 23 °C (73 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q24 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 24 °C (75 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q25 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 25 °C (77 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0400- Q26 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 26 °C (79 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q27 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 27 °C (81 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q28 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 28 °C (82 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q29 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 29 °C (84 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q30 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 30 °C (86 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q32 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 32 °C (90 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q35 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 35 °C (95 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q37 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 37 °C (99 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q40 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 40 °C (104 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q42 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 42 °C (108 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q45 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 45 °C (113 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q50 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 50 °C (122 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q52 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 52 °C (126 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q54 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 54 °C (129 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q56 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 56 °C (133 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q58 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 58 °C (136 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q62 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 62 °C (144 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q65 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 65 °C (149 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q68 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 68 °C (154 °F) 200-235 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q70 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 70 °C (158 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q72 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 72 °C (162 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q76 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 76 °C (169 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q79 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 79 °C (174 °F) 200-230 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q82 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 82 °C (180 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q85 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 85 °C (185 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q87 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 87 °C (189 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q89 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 89 °C (192 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q91 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 91 °C (196 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q93 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 93 °C (199 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q95 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 95 °C (203 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q97 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 97 °C (207 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q99 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 99 °C (210 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
0500- Q100 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 100 °C (212 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q105 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 105 °C (221 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q110 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 110 °C (230 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q114 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 114 °C (237 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q120 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 120 °C (248 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q125 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 125 °C (257 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q129 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 129 °C (264 °F) 200-240 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q134 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 134 °C (273 °F) 220-250 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q140 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 140 °C (284 °F) 220-250 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q144 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 144 °C (291 °F) 220-250 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q148 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 148 °C (298 °F) 220-250 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q152 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 152 °C (306 °F) 220-250 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q155 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 155 °C (311 °F) 220-250 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q159 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 159 °C (318 °F) 220-280 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q161 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 161 °C (322 °F) 220-280 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q169 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 169 °C (336 °F) 220-280 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
1000- Q175 BioPCM Phase Change
Energy Solutions[48]
Functionalized BioPCM Bulk, Macro-encapsulated 175 °C (347 °F) 220-280 900-1250 850-1300 0.25-2.5 0.2-0.7 2.5-4.5 2.3-4.1
18 C0 Infinite R Insolcorp[49] Inorganic Macro-encapsulated 18 °C (64 °F) 200 1540 0.54 1.09 3.14
21 C0 Infinite R Insolcorp[49] Inorganic Macro-encapsulated 21 °C (70 °F) 200 1540 0.54 1.09 3.14
23 C0 Infinite R Insolcorp[49] Inorganic Macro-encapsulated 23 °C (73 °F) 200 1540 0.54 1.09 3.14
25 C0 Infinite R Insolcorp[49] Inorganic Macro-encapsulated 25 °C (77 °F) 200 1540 0.54 1.09 3.14
29 C0 Infinite R Insolcorp[49] Inorganic Macro-encapsulated 29 °C (84 °F) 200 1540 0.54 1.09 3.14
savE HS 33N[50] Pluss[51] Inorganic Bulk −30 °C (−22 °F) 224 1425
savE HS 26N[52] Pluss Inorganic Bulk −24 °C (−11 °F) 222 1200 3.6
savE HS 23N[53] Pluss Inorganic Bulk −20 °C (−4 °F) 210 1140 0.7 4.9 3.4
savE HS 18N[54] Pluss Inorganic Bulk −18 °C (0 °F) 242 1095 0.44
savE HS 15N[55] Pluss Inorganic Bulk −15 °C (5 °F) 280 1070 0.53 5.26 3.4
savE HS 10N[56] Pluss Inorganic Bulk −10 °C (14 °F) 230 1125 0.60 4.25 0.96
savE HS 7N[57] Pluss Inorganic Bulk −6 °C (21 °F) 230 1120 0.55 1.76 3.2
savE HS 01[58] Pluss Inorganic Bulk 1 °C (34 °F) 290 1010 0.55 2.2 3.9
savE OM 03[59] Pluss Organic Bulk 3.5 °C (38.3 °F) 240 835 0.146 0.22 3
savE FS 03[60] Pluss Organic Bulk 3.6 °C (38.5 °F) 214 0.16
savE OM 05[61] Pluss Organic Bulk 5.5 °C (41.9 °F) 130 845 0.135 0.3 2.37
savE FS 05[62] Pluss Organic Bulk 5.9 °C (42.6 °F) 110 0.134
savE OM 08[63] Pluss Organic Bulk 9 °C (48 °F) 220 1050 0.168 0.235 3.1
savE OM 11[64] Pluss Organic Bulk 9.5 °C (49.1 °F) 240 1060 0.118 0.235
savE OM 21[65] Pluss Organic Bulk 21 °C (70 °F) 250 924 0.14 0.21 2.6
savE FS 21[66] Pluss Organic Bulk 21 °C (70 °F) 130 0.3
savE HS 21[67] Pluss Inorganic Bulk 22 °C (72 °F) 185 1400 0.59 0.82 3.4
savE HS 22[68] Pluss Inorganic Bulk 23 °C (73 °F) 185 1540 0.56 1.13 3.04
savE HS 24[69] Pluss Inorganic Bulk 25 °C (77 °F) 185 1510 0.55 1.05 2.3
savE HS 29[70] Pluss Inorganic Bulk 29 °C (84 °F) 190 1530 0.382 0.478 2.3
savE OM 29[71] Pluss Organic Bulk 29 °C (84 °F) 229 870 0.172 0.293 3.9
savE FS 29[72] Pluss Organic Bulk 29 °C (84 °F) 189 0.45
savE OM 30[73] Pluss Organic Bulk 31 °C (88 °F) 200 878 0.123 0.185 2.6
savE FS 30[74] Pluss Organic Bulk 31 °C (88 °F) 170 0.496
savE OM 32[75] Pluss Organic Bulk 32 °C (90 °F) 200 870 0.145 0.219
savE HS 34[76] Pluss Inorganic Bulk 35 °C (95 °F) 150 1850 0.47 0.5 2.4
savE OM 35[77] Pluss Organic Bulk 37 °C (99 °F) 197 870 0.16 0.2
savE OM 37[78] Pluss Organic Bulk 37 °C (99 °F) 210 860 0.13 0.16
savE OM 46[79] Pluss Organic Bulk 46 °C (115 °F) 250 880 0.1 0.2
savE OM 48[80] Pluss Organic Bulk 48 °C (118 °F) 275 875 0.12 0.2
savE OM 50[81] Pluss Organic Bulk 50.3 °C (122.5 °F) 250 850 0.14 0.21 3.05
savE OM 55[82] Pluss Organic Bulk 55 °C (131 °F) 210 840 0.1 0.16 3.05
savE OM 65[83] Pluss Organic Bulk 67 °C (153 °F) 183 924 0.33 0.19 2.38
savE FSM 65[84] Pluss Organic Bulk 67 °C (153 °F) 150 845 0.25
savE HS 89[85] Pluss Inorganic Bulk 87 °C (189 °F) 180 1630
PureTemp -37 [86] PureTemp LLC Organic Bulk −37 °C (−35 °F) 147 880 1.39
PureTemp -23 PureTemp LLC Organic Bulk −23 °C (−9 °F) 145 860 2.11
PureTemp -21 [87] PureTemp LLC Organic Bulk −21 °C (−6 °F) 240 1060 1.83
PureTemp -17 PureTemp LLC Organic Bulk −17 °C (1 °F) 145 860 1.74
PureTemp -15 [88] PureTemp LLC Organic Bulk −15 °C (5 °F) 286 1030 1.84
PureTemp -12 PureTemp LLC Organic Bulk −12 °C (10 °F) 168 870 1.86
PureTemp -2 [89] PureTemp LLC Organic Bulk −5 °C (23 °F) 150 860 1.66
PureTemp 1 PureTemp LLC Organic Bulk 1 °C (34 °F) 300 1000 2.32
PureTemp 4 [90] PureTemp LLC Organic Bulk 4 °C (39 °F) 187 880 2.26
PureTemp 6 PureTemp LLC Organic Bulk 6 °C (43 °F) 170 860 1.56
PureTemp 8 [91] PureTemp LLC Organic Bulk 8 °C (46 °F) 180 860 1.85
PureTemp 12 PureTemp LLC Organic Bulk 12 °C (54 °F) 185 860 1.76
PureTemp 15 [92] PureTemp LLC Organic Bulk 15 °C (59 °F) 165 860 2.25
PureTemp 18 [93] PureTemp LLC Organic Bulk 18 °C (64 °F) 189 860 1.47
PureTemp 20 [94] PureTemp LLC Organic Bulk 20 °C (68 °F) 180 860 2.59
PureTemp 23 [95] PureTemp LLC Organic Bulk 23 °C (73 °F) 203 830 1.84
PureTemp 24 PureTemp LLC Organic Bulk 24 °C (75 °F) 185 860 2.85
PureTemp 25 [96] PureTemp LLC Organic Bulk 25 °C (77 °F) 185 860 1.99
PureTemp 27 [97] PureTemp LLC Organic Bulk 27 °C (81 °F) 200 860 2.46
PureTemp 28 [98] PureTemp LLC Organic Bulk 28 °C (82 °F) 205 860 2.34
PureTemp 29 [99] PureTemp LLC Organic Bulk 29 °C (84 °F) 189 850 1.77
PureTemp 33 PureTemp LLC Organic Bulk 33 °C (91 °F) 185 850 2.34
PureTemp 35 PureTemp LLC Organic Bulk 35 °C (95 °F) 180 850 2.44
PureTemp 37 [100] PureTemp LLC Organic Bulk 38 °C (100 °F) 222 840 2.21
PureTemp 48 [101] PureTemp LLC Organic Bulk 48 °C (118 °F) 245 820 2.1
PureTemp 53 [102] PureTemp LLC Organic Bulk 53 °C (127 °F) 225 990 2.36
PureTemp 58 [103] PureTemp LLC Organic Bulk 58 °C (136 °F) 237 810 2.47
PureTemp 60 [104] PureTemp LLC Organic Bulk 61 °C (142 °F) 230 870 2.04
PureTemp 63 [105] PureTemp LLC Organic Bulk 63 °C (145 °F) 199 840 1.99
PureTemp 68 [106] PureTemp LLC Organic Bulk 68 °C (154 °F) 198 870 1.85
PureTemp 108 PureTemp LLC Organic Bulk 108 °C (226 °F) 180 800
PureTemp 151 [107] PureTemp LLC Organic Bulk 151 °C (304 °F) 170 1360 2.06
Astorstat HA 17 Honeywell[108] Organic Bulk 21.7 °C (71.1 °F)
Astorstat HA 18 Honeywell Organic Bulk 27.2 °C (81.0 °F)
RT26 Rubitherm GmbH[109] Organic Bulk 24 °C (75 °F) 232
RT27 Rubitherm GmbH Organic Bulk 28 °C (82 °F) 206
Climsel C -21 Climator[110] Inorganic Bulk −21 °C (−6 °F) 288 1300 0.6 3.6
Climsel C -18 Climator Inorganic Bulk −18 °C (0 °F) 288 1300 0.6 3.6
Climsel C 7 Climator Inorganic Bulk 7 °C (45 °F) 126 1400 0.6 3.6
Climsel C 10 Climator Inorganic Bulk 10.5 °C (50.9 °F) 126 1400 0.6 3.6
Climsel C 21 Climator Inorganic Bulk 21 °C (70 °F) 112 1380 0.6 3.6
Climsel C24 Climator Inorganic Bulk 24 °C (75 °F) 151.3 1380 0.6 3.6
Climsel C28 Climator Inorganic Bulk 28 °C (82 °F) 162.3 1420 0.6 3.6
Climsel C32 Climator Inorganic Bulk 32 °C (90 °F) 162.3 1420 0.6 3.6
Climsel C48 Climator Inorganic Bulk 48 °C (118 °F) 180 1360 0.6 3.6
Climsel C58 Climator Inorganic Bulk 58 °C (136 °F) 288.5 1460 0.6 1.89
Climsel C70 Climator Inorganic Bulk 70 °C (158 °F) 282.9 1400 0.6 3.6
STL27 Mitsubishi Chemicals[111] Inorganic Bulk 27 °C (81 °F) 213
S27 Cristopia[112] Inorganic Bulk 27 °C (81 °F) 207
TH 29 TEAP[113] Inorganic Bulk 29 °C (84 °F) 188
RT 20 Rubitherm GmbH Organic Bulk 22 °C (72 °F) 172
Climsel C23 Climator Inorganic Bulk 23 °C (73 °F) 148 32
RT 26 Rubitherm GmbH Organic Bulk 25 °C (77 °F) 131
RT 30 Rubitherm GmbH Organic Bulk 28 °C (82 °F) 206
RT 32 Rubitherm GmbH Organic Bulk 21 °C (70 °F) 130
DS 5000 Micronal[114] Micro-encapsulated 26 °C (79 °F) 45
DS 5007 Micronal Micro-encapsulated 23 °C (73 °F) 41
DS 5030 Micronal Micro-encapsulated 21 °C (70 °F) 37
DS 5001 Micronal Micro-encapsulated 26 °C (79 °F) 110
DS 5008 Micronal Micro-encapsulated 23 °C (73 °F) 100
DS 5029 Micronal Micro-encapsulated 21 °C (70 °F) 90
RT -9 HC Rubitherm GmbH Organic Bulk −9 °C (16 °F) 260
RT -4 Rubitherm GmbH Organic Bulk −4 °C (25 °F) 179
RT 0 Rubitherm GmbH Organic Bulk 0 °C (32 °F) 225
RT 2 HC Rubitherm GmbH Organic Bulk 2 °C (36 °F) 205
RT 3 Rubitherm GmbH Organic Bulk 3 °C (37 °F) 198
RT 3 HC Rubitherm GmbH Organic Bulk 3 °C (37 °F) 250
RT 4 Rubitherm GmbH Organic Bulk 4 °C (39 °F) 182
RT 5 Rubitherm GmbH Organic Bulk 5 °C (41 °F) 180
RT 5 HC Rubitherm GmbH Organic Bulk 5 °C (41 °F) 240
RT 6 Rubitherm GmbH Organic Bulk 6 °C (43 °F) 175
RT 8 Rubitherm GmbH Organic Bulk 8 °C (46 °F) 180
RT 9 Rubitherm GmbH Organic Bulk 9 °C (48 °F) 160
RT 10 Rubitherm GmbH Organic Bulk 10 °C (50 °F) 150
RT 10 HC Rubitherm GmbH Organic Bulk 10 °C (50 °F) 195
RT 11 HC Rubitherm GmbH Organic Bulk 11 °C (52 °F) 190
RT 12 Rubitherm GmbH Organic Bulk 12 °C (54 °F) 150
RT 15 Rubitherm GmbH Organic Bulk 15 °C (59 °F) 140
RT 18 HC Rubitherm GmbH Organic Bulk 18 °C (64 °F) 250
RT 21 Rubitherm GmbH Organic Bulk 21 °C (70 °F) 160
RT 21 HC Rubitherm GmbH Organic Bulk 21 °C (70 °F) 190
RT 22 HC Rubitherm GmbH Organic Bulk 22 °C (72 °F) 200
RT 24 Rubitherm GmbH Organic Bulk 24 °C (75 °F) 150
RT 25 Rubitherm GmbH Organic Bulk 25 °C (77 °F) 148
RT 25 HC Rubitherm GmbH Organic Bulk 25 °C (77 °F) 230
RT 27 Rubitherm GmbH Organic Bulk 27 °C (81 °F) 179
RT 28 HC Rubitherm GmbH Organic Bulk 28 °C (82 °F) 245
RT 31 Rubitherm GmbH Organic Bulk 31 °C (88 °F) 170
RT 35 Rubitherm GmbH Organic Bulk 35 °C (95 °F) 170
RT 35 HC Rubitherm GmbH Organic Bulk 35 °C (95 °F) 240
RT 42 Rubitherm GmbH Organic Bulk 42 °C (108 °F) 174
RT 44 HC Rubitherm GmbH Organic Bulk 44 °C (111 °F) 255
RT 47 Rubitherm GmbH Organic Bulk 47 °C (117 °F) 170
RT 50 Rubitherm GmbH Organic Bulk 50 °C (122 °F) 168
RT 52 Rubitherm GmbH Organic Bulk 52 °C (126 °F) 173
RT 55 Rubitherm GmbH Organic Bulk 55 °C (131 °F) 172
RT 58 Rubitherm GmbH Organic Bulk 58 °C (136 °F) 160
RT 60 Rubitherm GmbH Organic Bulk 60 °C (140 °F) 144
RT 62 Rubitherm GmbH Organic Bulk 62 °C (144 °F) 146
RT 65 Rubitherm GmbH Organic Bulk 65 °C (149 °F) 152
RT 70 HC Rubitherm GmbH Organic Bulk 70 °C (158 °F) 230
RT 80 HC Rubitherm GmbH Organic Bulk 79 °C (174 °F) 240
RT 82 Rubitherm GmbH Organic Bulk 82 °C (180 °F) 176
RT 90 HC Rubitherm GmbH Organic Bulk 90 °C (194 °F) 200
S117 PlusICE[115] Inorganic Bulk 117 °C (243 °F) 160 1450 0.7 2.61
S89 PlusICE Inorganic Bulk 89 °C (192 °F) 151 1550 0.67 2.48
S83 PlusICE Inorganic Bulk 83 °C (181 °F) 141 1600 0.62 2.31
S72 PlusICE Inorganic Bulk 72 °C (162 °F) 127 1666 0.58 2.13
S70 PlusICE Inorganic Bulk 70 °C (158 °F) 110 1680 0.57 2.1
S58 PlusICE Inorganic Bulk 58 °C (136 °F) 145 1505 0.69 2.55
S50 PlusICE Inorganic Bulk 50 °C (122 °F) 100 1601 0.43 1.59
S46 PlusICE Inorganic Bulk 46 °C (115 °F) 210 1587 0.45 2.41
S44 PlusICE Inorganic Bulk 44 °C (111 °F) 100 1584 0.43 1.61
S34 PlusICE Inorganic Bulk 34 °C (93 °F) 115 2100 0.52 2.1
S32 PlusICE Inorganic Bulk 32 °C (90 °F) 200 1460 0.51 1.91
S30 PlusICE Inorganic Bulk 30 °C (86 °F) 190 1304 0.48 1.9
S27 PlusICE Inorganic Bulk 27 °C (81 °F) 183 1530 0.54 2.2
S25 PlusICE Inorganic Bulk 25 °C (77 °F) 180 1530 0.54 2.2
S23 PlusICE Inorganic Bulk 23 °C (73 °F) 175 1530 0.54 2.2
S21 PlusICE Inorganic Bulk 22 °C (72 °F) 170 1530 0.54 2.2
S19 PlusICE Inorganic Bulk 19 °C (66 °F) 160 1520 0.43 1.9
S17 PlusICE Inorganic Bulk 17 °C (63 °F) 160 1525 0.43 1.9
S15 PlusICE Inorganic Bulk 15 °C (59 °F) 160 1510 0.43 1.9
S13 PlusICE Inorganic Bulk 13 °C (55 °F) 160 1515 0.43 1.9
S10 PlusICE Inorganic Bulk 10 °C (50 °F) 155 1470 0.43 1.9
S8 PlusICE Inorganic Bulk 8 °C (46 °F) 150 1475 0.44 1.9
S7 PlusICE Inorganic Bulk 7 °C (45 °F) 150 1700 0.4 1.85
A164 PlusICE Organic Bulk 164 °C (327 °F) 290 1500 2.42
A155 PlusICE Organic Bulk 155 °C (311 °F) 100 900 0.23 2.2
A144 PlusICE Organic Bulk 144 °C (291 °F) 115 880 0.23 2.2
A133 PlusICE Organic Bulk 133 °C (271 °F) 126 880 0.23 2.2
A118 PlusICE Organic Bulk 118 °C (244 °F) 340 1450 2.7
A95 PlusICE Organic Bulk 95 °C (203 °F) 205 900 0.22 2.2
A82 PlusICE Organic Bulk 82 °C (180 °F) 155 850 0.22 2.21
A70 PlusICE Organic Bulk 70 °C (158 °F) 173 890 0.23 2.2
A62 PlusICE Organic Bulk 62 °C (144 °F) 145 910 0.22 2.2
A60H PlusICE Organic Bulk 60 °C (140 °F) 212 800 0.18 2.15
A60H PlusICE Organic Bulk 60 °C (140 °F) 145 910 0.22 2.22
A58H PlusICE Organic Bulk 58 °C (136 °F) 243 820 0.18 2.85
A58 PlusICE Organic Bulk 58 °C (136 °F) 132 910 0.22 2.22
A55 PlusICE Organic Bulk 55 °C (131 °F) 135 905 0.22 2.22
A53H PlusICE Organic Bulk 53 °C (127 °F) 166 810 0.18 2.02
A53H PlusICE Organic Bulk 53 °C (127 °F) 130 910 0.22 2.22
A52 PlusICE Organic Bulk 52 °C (126 °F) 222 810 0.18 2.15
A50 PlusICE Organic Bulk 50 °C (122 °F) 218 810 0.18 2.15
A48 PlusICE Organic Bulk 48 °C (118 °F) 234 810 0.18 2.85
A46 PlusICE Organic Bulk 46 °C (115 °F) 155 910 0.22 2.22
A44 PlusICE Organic Bulk 44 °C (111 °F) 242 805 0.18 2.15
A43 PlusICE Organic Bulk 43 °C (109 °F) 165 780 0.18 2.37
A42 PlusICE Organic Bulk 42 °C (108 °F) 105 905 0.21 2.22
A40 PlusICE Organic Bulk 40 °C (104 °F) 230 810 0.18 2.43
A39 PlusICE Organic Bulk 39 °C (102 °F) 105 900 0.22 2.22
A37 PlusICE Organic Bulk 37 °C (99 °F) 235 810 0.18 2.85
A36 PlusICE Organic Bulk 36 °C (97 °F) 217 790 0.18 2.37
A32 PlusICE Organic Bulk 32 °C (90 °F) 130 845 0.21 2.2
A29 PlusICE Organic Bulk 29 °C (84 °F) 225 810 0.18 2.15
A28 PlusICE Organic Bulk 28 °C (82 °F) 155 789 0.21 2.22
A26 PlusICE Organic Bulk 26 °C (79 °F) 150 790 0.21 2.22
A25H PlusICE Organic Bulk 25 °C (77 °F) 226 810 0.18 2.15
A25 PlusICE Organic Bulk 25 °C (77 °F) 150 785 0.18 2.26
A24 PlusICE Organic Bulk 24 °C (75 °F) 145 790 0.18 2.22
A23 PlusICE Organic Bulk 23 °C (73 °F) 145 785 0.18 2.22
A22H PlusICE Organic Bulk 22 °C (72 °F) 216 820 0.18 2.85
A22 PlusICE Organic Bulk 22 °C (72 °F) 145 785 0.18 2.22
A17 PlusICE Organic Bulk 17 °C (63 °F) 150 785 0.18 2.22
A16 PlusICE Organic Bulk 16 °C (61 °F) 213 760 0.18 2.37
A15 PlusICE Organic Bulk 15 °C (59 °F) 130 790 0.18 2.26
A9 PlusICE Organic Bulk 9 °C (48 °F) 140 775 0.21 2.16
A8 PlusICE Organic Bulk 8 °C (46 °F) 150 773 0.21 2.16
A6 PlusICE Organic Bulk 6 °C (43 °F) 150 770 0.21 2.17
A4 PlusICE Organic Bulk 4 °C (39 °F) 200 766 0.21 2.18
A3 PlusICE Organic Bulk 3 °C (37 °F) 200 765 0.21 2.2
A2 PlusICE Organic Bulk 2 °C (36 °F) 200 765 0.21 2.2
E0 PlusICE Eutectic Bulk 0 °C (32 °F) 332 1000 0.58 4.19
E-2 PlusICE Eutectic Bulk −2 °C (28 °F) 306 1070 0.58 3.8
E-3 PlusICE Eutectic Bulk −3.7 °C (25.3 °F) 312 1060 0.6 3.84
E-6 PlusICE Eutectic Bulk −6 °C (21 °F) 275 1110 0.56 3.83
E-10 PlusICE Eutectic Bulk −10 °C (14 °F) 286 1140 0.56 3.33
E-11 PlusICE Eutectic Bulk −11.6 °C (11.1 °F) 301 1090 0.57 3.55
E-12 PlusICE Eutectic Bulk −12.3 °C (9.9 °F) 250 1110 0.56 3.47
E-14 PlusICE Eutectic Bulk −14.8 °C (5.4 °F) 243 1220 0.53 3.51
E-15 PlusICE Eutectic Bulk −15 °C (5 °F) 303 1060 0.53 3.87
E-19 PlusICE Eutectic Bulk −18.7 °C (−1.7 °F) 282 1125 0.58 3.29
E-21 PlusICE Eutectic Bulk −20.6 °C (−5.1 °F) 263 1240 0.51 3.13
E-22 PlusICE Eutectic Bulk −22 °C (−8 °F) 234 1180 0.57 3.34
E-26 PlusICE Eutectic Bulk −26 °C (−15 °F) 260 1250 0.58 3.67
E-29 PlusICE Eutectic Bulk −29 °C (−20 °F) 222 1420 0.64 3.69
E-32 PlusICE Eutectic Bulk −32 °C (−26 °F) 243 1290 0.56 2.95
E-34 PlusICE Eutectic Bulk −33.6 °C (−28.5 °F) 240 1205 0.54 3.05
E-37 PlusICE Eutectic Bulk −36.5 °C (−33.7 °F) 213 1500 0.54 3.15
E-50 PlusICE Eutectic Bulk −49.8 °C (−57.6 °F) 218 1325 0.56 3.28
E-75 PlusICE Eutectic Bulk −75 °C (−103 °F) 102 902 0.17 2.43
E-78 PlusICE Eutectic Bulk −78 °C (−108 °F) 115 880 0.14 1.96
E-90 PlusICE Eutectic Bulk −90 °C (−130 °F) 90 786 0.14 2.56
E-114 PlusICE Eutectic Bulk −114 °C (−173 °F) 107 782 0.17 2.39
PCM-HS26N SAVENRG[116] Inorganic Bulk −26 °C (−15 °F) 205 1200
PCM-HS23N SAVENRG Inorganic Bulk −23 °C (−9 °F) 200 1180
PCM-HS10N SAVENRG Inorganic Bulk −10 °C (14 °F) 220 1100
PCM-HS07N SAVENRG Inorganic Bulk −7 °C (19 °F) 230 1120
PCM-HS01P SAVENRG Inorganic Bulk 0 °C (32 °F) 290 1010
PCM-OM05P SAVENRG Organic Bulk 5 °C (41 °F) 198 770
PCM-0M06P SAVENRG Organic Bulk 5.5 °C (41.9 °F) 260 735
PCM-0M08P SAVENRG Organic Bulk 8 °C (46 °F) 190 1050
PCM-0M11P SAVENRG Organic Bulk 11 °C (52 °F) 260 1060
PCM-0M21P SAVENRG Organic Bulk 21 °C (70 °F) 120 1050
PCM-H22P SAVENRG Inorganic Bulk 22 °C (72 °F) 185 1540
PCM-HS24P SAVENRG Inorganic Bulk 24 °C (75 °F) 185 1540
PCM-HS29P SAVENRG Inorganic Bulk 29 °C (84 °F) 190 1550
PCM-OM32P SAVENRG Organic Bulk 32 °C (90 °F) 235 870
PCM-OM35P SAVENRG Organic Bulk 35 °C (95 °F) 197 870
PCM-HS34P SAVENRG Inorganic Bulk 34 °C (93 °F) 150 1850
PCM-OM37P SAVENRG Organic Bulk 37 °C (99 °F) 218 880
PCM-OM46P SAVENRG Organic Bulk 46 °C (115 °F) 245 860
PCM-OM48P SAVENRG Organic Bulk 48 °C (118 °F) 255 980
PCM-OM53P SAVENRG Organic Bulk 53 °C (127 °F) 192 860
PCM-OM65P SAVENRG Organic Bulk 65 °C (149 °F) 210 840
PCM-HS89P SAVENRG Inorganic Bulk 89 °C (192 °F) 180 1540
MPCM -30 Microtek[117] Organic Micro-encapsulated −30 °C (−22 °F) 145
MPCM -30D Microtek Organic Micro-encapsulated −30 °C (−22 °F) 145
MPCM -10 Microtek Organic Micro-encapsulated −9.5 °C (14.9 °F) 155
MPCM -10D Microtek Organic Micro-encapsulated −9.5 °C (14.9 °F) 155
MPCM 6 Microtek Organic Micro-encapsulated 6 °C (43 °F) 162
MPCM 6D Microtek Organic Micro-encapsulated 6 °C (43 °F) 162
MPCM 18 Microtek Organic Micro-encapsulated 18 °C (64 °F) 168
MPCM 18D Microtek Organic Micro-encapsulated 18 °C (64 °F) 168
MPCM 28 Microtek Organic Micro-encapsulated 28 °C (82 °F) 187.5
MPCM 28D Microtek Organic Micro-encapsulated 28 °C (82 °F) 187.5
MPCM28D-IR Microtek Organic Micro-encapsulated 56 °C (133 °F) 170
MPCM 37 Microtek Organic Micro-encapsulated 37 °C (99 °F) 195
MPCM 37D Microtek Organic Micro-encapsulated 37 °C (99 °F) 195
MPCM 43D Microtek Organic Micro-encapsulated 43 °C (109 °F) 195
MPCM 56D Microtek Organic Micro-encapsulated 56 °C (133 °F) 170
Latest 29 T TEAP Inorganic Bulk 28 °C (82 °F) 175 1490 1 2
Latest 25 T TEAP Inorganic Bulk 24 °C (75 °F) 175 1490 1 2
Latest 20 T TEAP Inorganic Bulk 19 °C (66 °F) 175 1490 1 2
Latest 18 T TEAP Inorganic Bulk 17 °C (63 °F) 175 1490 1 2

The above dataset is also available as an Excel spreadsheet from UCLA Engineering

Technology, development and encapsulation

The most commonly used PCMs are salt hydrates, fatty acids and esters, and various paraffins (such as octadecane). Recently also ionic liquids were investigated as novel PCMs.

As most of the organic solutions are water-free, they can be exposed to air, but all salt based PCM solutions must be encapsulated to prevent water evaporation or uptake. Both types offer certain advantages and disadvantages and if they are correctly applied some of the disadvantages becomes an advantage for certain applications.

They have been used since the late 19th century as a medium for thermal storage applications. They have been used in such diverse applications as refrigerated transportation[118] for rail[119] and road applications[120] and their physical properties are, therefore, well known.

Unlike the ice storage system, however, the PCM systems can be used with any conventional water chiller both for a new or alternatively retrofit application. The positive temperature phase change allows centrifugal and absorption chillers as well as the conventional reciprocating and screw chiller systems or even lower ambient conditions utilizing a cooling tower or dry cooler for charging the TES system.

The temperature range offered by the PCM technology provides a new horizon for the building services and refrigeration engineers regarding medium and high temperature energy storage applications. The scope of this thermal energy application is wide-ranging of solar heating, hot water, heating rejection (i.e., cooling tower), and dry cooler circuitry thermal energy storage applications.

Since PCMs transform between solid–liquid in thermal cycling, encapsulation[121] naturally became the obvious storage choice.

  • Encapsulation of PCMs
    • Macro-encapsulation: Early development of macro-encapsulation with large volume containment failed due to the poor thermal conductivity of most PCMs. PCMs tend to solidify at the edges of the containers preventing effective heat transfer.
    • Micro-encapsulation: Micro-encapsulation on the other hand showed no such problem. It allows the PCMs to be incorporated into construction materials, such as concrete, easily and economically. Micro-encapsulated PCMs also provide a portable heat storage system. By coating a microscopic sized PCM with a protective coating, the particles can be suspended within a continuous phase such as water. This system can be considered a phase change slurry (PCS).
    • Molecular-encapsulation is another technology, developed by Dupont de Nemours that allows a very high concentration of PCM within a polymer compound. It allows storage capacity up to 515 kJ/m2 for a 5 mm board (103 MJ/m3). Molecular-encapsulation allows drilling and cutting through the material without any PCM leakage.

As phase change materials perform best in small containers, therefore they are usually divided in cells. The cells are shallow to reduce static head – based on the principle of shallow container geometry. The packaging material should conduct heat well; and it should be durable enough to withstand frequent changes in the storage material's volume as phase changes occur. It should also restrict the passage of water through the walls, so the materials will not dry out (or water-out, if the material is hygroscopic). Packaging must also resist leakage and corrosion. Common packaging materials showing chemical compatibility with room temperature PCMs include stainless steel, polypropylene and polyolefin.

Thermal composites

Thermal composites is a term given to combinations of phase change materials (PCMs) and other (usually solid) structures. A simple example is a copper mesh immersed in paraffin wax. The copper mesh within paraffin wax can be considered a composite material, dubbed a thermal composite. Such hybrid materials are created to achieve specific overall or bulk properties.

Thermal conductivity is a common property targeted for maximization by creating thermal composites. In this case, the basic idea is to increase thermal conductivity by adding a highly conducting solid (such as the copper mesh) into the relatively low-conducting PCM, thus increasing overall or bulk (thermal) conductivity. If the PCM is required to flow, the solid must be porous, such as a mesh.

Solid composites such as fiberglass or kevlar prepreg for the aerospace industry usually refer to a fiber (the kevlar or the glass) and a matrix (the glue, which solidifies to hold fibers and provide compressive strength). A thermal composite is not so clearly defined but could similarly refer to a matrix (solid) and the PCM, which is of course usually liquid and/or solid depending on conditions. They are also meant to discover minor elements in the earth.

Applications

Phase-change material being employed in the treatment of neonates with birth asphyxia[122][123]
Anti-icing potential of solidified Phase Switching Liquid (S-PSL),[124] a class of phase change materials.

Applications[1][125] of phase change materials include, but are not limited to:

  • Thermal energy storage
  • Solar cooking
  • Cold Energy Battery
  • Conditioning of buildings, such as 'ice-storage'
  • Cooling of heat and electrical engines
  • Cooling: food, beverages, coffee, wine, milk products, green houses
  • Delaying ice and frost formation on surfaces[124]
  • Medical applications: transportation of blood, operating tables, hot-cold therapies, treatment of birth asphyxia[122]
  • Human body cooling under bulky clothing or costumes.
  • Waste heat recovery
  • Off-peak power utilization: Heating hot water and Cooling
  • Heat pump systems
  • Passive storage in bioclimatic building/architecture (HDPE, paraffin)
  • Smoothing exothermic temperature peaks in chemical reactions
  • Solar power plants
  • Spacecraft thermal systems
  • Thermal comfort in vehicles
  • Thermal protection of electronic devices
  • Thermal protection of food: transport, hotel trade, ice-cream, etc.
  • Textiles used in clothing
  • Computer cooling
  • Turbine Inlet Chilling with thermal energy storage
  • Telecom shelters in tropical regions. They protect the high-value equipment in the shelter by keeping the indoor air temperature below the maximum permissible by absorbing heat generated by power-hungry equipment such as a Base Station Subsystem. In case of a power failure to conventional cooling systems, PCMs minimize use of diesel generators, and this can translate into enormous savings across thousands of telecom sites in tropics.

Fire and safety issues

Some phase change materials are suspended in water, and are relatively nontoxic. Others are hydrocarbons or other flammable materials, or are toxic. As such, PCMs must be selected and applied very carefully, in accordance with fire and building codes and sound engineering practices. Because of the increased fire risk, flamespread, smoke, potential for explosion when held in containers, and liability, it may be wise not to use flammable PCMs within residential or other regularly occupied buildings. Phase change materials are also being used in thermal regulation of electronics.

See also

References

  1. Kenisarin, M; Mahkamov, K (2007). "Solar energy storage using phase change materials". Renewable and Sustainable –1965. 11 (9): 1913–1965. doi:10.1016/j.rser.2006.05.005.
  2. Sharma, Atul; Tyagi, V.V.; Chen, C.R.; Buddhi, D. (2009). "Review on thermal energy storage with phase change materials and applications". Renewable and Sustainable Energy Reviews. 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005.
  3. "ENRG Blanket powered by BioPCM". Phase Change Energy Solutions. Retrieved March 12, 2018.
  4. "Heat storage systems" (PDF) by Mary Anne White, brings a list of advantages and disadvantages of Paraffin heat storage. A more complete list can be found in AccessScience website from McGraw-Hill, DOI 10.1036/1097-8542.YB020415, last modified: March 25, 2002 based on 'Latent heat storage in concrete II, Solar Energy Materials, Hawes DW, Banu D, Feldman D, 1990, 21, pp.61–80.
  5. Floros, Michael C.; Kaller, Kayden L. C.; Poopalam, Kosheela D.; Narine, Suresh S. (2016-12-01). "Lipid derived diamide phase change materials for high temperature thermal energy storage". Solar Energy. 139: 23–28. Bibcode:2016SoEn..139...23F. doi:10.1016/j.solener.2016.09.032.
  6. Agyenim, Francis; Eames, Philip; Smyth, Mervyn (2011-01-01). "Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system". Renewable Energy. 36 (1): 108–117. doi:10.1016/j.renene.2010.06.005.
  7. Fleishcher, A.S. (2014). "Improved heat recovery from paraffn-based phase change materials due to the presence of percolating graphene networks". Improved Heat Recovery from Paraffn-based Phase Change Materials Due to the Presence of Percolating Graphene Networks. 79: 324–333.
  8. (2015). Thermal energy storage using phase change materials: fundamentals and applications. Springer
  9. Phase Change Energy Solutions https://id.elsevier.com/as/authorization.oauth2?platSite=SD%2Fscience&scope=openid+email+profile+els_auth_info+urn%3Acom%3Aelsevier%3Aidp%3Apolicy%3Aproduct%3Ainst_assoc&response_type=code&redirect_uri=https%3A%2F%2Fwww.sciencedirect.com%2Fuser%2Fidentity%2Flanding&authType=SINGLE_SIGN_IN&prompt=none&client_id=SDFE-v3&state=retryCounter%3D0%26csrfToken%3D7b73d88c-a46a-4ce5-8a58-7a21b367a560%26idpPolicy%3Durn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26returnUrl%3Dhttps%253A%252F%252Fwww.sciencedirect.com%252Ftopics%252Fengineering%252Fsalt-hydrate%26prompt%3Dnone%26cid%3Dtpp-9ec8e252-5eaf-44ce-a8d4-838d9800b9b3. Retrieved February 28, 2018. Missing or empty |title= (help)
  10. Cantor, S. (1978). "DSC study of melting and solidification of salt hydrates". Thermochimica Acta. 26 (1–3): 39–47. doi:10.1016/0040-6031(78)80055-0.
  11. olé, A.; Miró, L.; Barreneche, C.; Martorell, I.; Cabeza, L.F. (2015). "Corrosion of metals and salt hydrates used for thermochemical energy storage". Renewable Energy. 75: 519–523. doi:10.1016/j.renene.2014.09.059.
  12. A. Sharma; V. Tyagi; C. Chen; D. Buddhi (February 2009). "Review on thermal energy storage with phase change materials and applications". Renewable and Sustainable Energy Reviews. 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005.
  13. Sharma, Someshower Dutt; Kitano, Hiroaki; Sagara, Kazunobu (2004). "Phase Change Materials for Low Temperature Solar Thermal Applications" (PDF). Res. Rep. Fac. Eng. Mie Univ. 29: 31–64. S2CID 17528226.
  14. "Infinite R". Insolcorp, Inc. Retrieved 2017-03-01.
  15. "Phase Change Energy Solutions PhaseStor". Phase Change Energy Solutions. Retrieved February 28, 2018.
  16. Pasupathy, A; Velraj, R; Seeniraj, R (2008). "Phase change material-based building architecture for thermal management in residential and commercial establishments". Renewable and Sustainable Energy Reviews. 12: 39–64. doi:10.1016/j.rser.2006.05.010.
  17. HyperPhysics, most from Young, Hugh D., University Physics, 7th Ed., Addison Wesley, 1992. Table 15-5. (most data should be at 293 K (20 °C; 68 °F))
  18. Ice – Thermal Properties. Engineeringtoolbox.com. Retrieved on 2011-06-05.
  19. Matthew Boesler (July 12, 2013). "Bottled Water Costs 2000 Times As Much As Tap Water". Business Insider. Retrieved 2018-06-01.
  20. "Sodium Sulfate-Sodium Sulfate Manufacturers, Suppliers and Exporters on Alibaba.comSulphate". www.alibaba.com.
  21. Sarı, A (2002). "Thermal and heat transfer characteristics in a latent heat storage system using lauric acid". Energy Conversion and Management. 43 (18): 2493–2507. doi:10.1016/S0196-8904(01)00187-X.
  22. H. Kakuichi et al., IEA annex 10 (1999)
  23. Beare-Rogers, J.; Dieffenbacher, A.; Holm, J.V. (2001). "Lexicon of lipid nutrition (IUPAC Technical Report)". Pure and Applied Chemistry. 73 (4): 685–744. doi:10.1351/pac200173040685.
  24. "lauric acid Q/MHD002-2006 lauric acid CN;SHN products". Alibaba.com. Retrieved 2010-02-24.
  25. "Fatty Acids – Fractioned (Asia Pacific) Price Report – Chemical pricing information". ICIS Pricing. Retrieved 2010-03-10.
  26. Nagano, K (2003). "Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems". Applied Thermal Engineering. 23 (2): 229–241. doi:10.1016/S1359-4311(02)00161-8.
  27. Yinping, Zhang; Yi, Jiang; Yi, Jiang (1999). "A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials". Measurement Science and Technology. 10 (3): 201–205. Bibcode:1999MeScT..10..201Y. doi:10.1088/0957-0233/10/3/015.
  28. Kalapathy, Uruthira; Proctor, Andrew; Shultz, John (2002-12-10). "Silicate Thermal Insulation Material from Rice Hull Ash". Industrial & Engineering Chemistry Research. 42 (1): 46–49. doi:10.1021/ie0203227.
  29. Sodium Silicate (Water Glass). Sheffield-pottery.com. Retrieved on 2011-06-05.
  30. Hukseflux Thermal Sensors. Hukseflux.com. Retrieved on 2011-06-05.
  31. Aluminium. Goodefellow. Web.archive.org (2008-11-13). Retrieved on 2011-06-05.
  32. "Aluminum Prices, London Metal Exchange (LME) Aluminum Alloy Prices, COMEX and Shanghai Aluminum Prices". 23 February 2010. Retrieved 2010-02-24.
  33. Copper. Goodfellow. Web.archive.org (2008-11-16). Retrieved on 2011-06-05.
  34. "Metal Prices and News". 23 February 2010. Retrieved 2010-02-24.
  35. Gold. Goodfellow. Web.archive.org (2008-11-15). Retrieved on 2011-06-05.
  36. Iron. Goodfellow. Web.archive.org (2008-11-18). Retrieved on 2011-06-05.
  37. "Iron Page". 7 December 2007. Retrieved 2010-02-24.
  38. Lead. Goodfellow. Web.archive.org (2008-11-18). Retrieved on 2011-06-05.
  39. Lithium. Goodfellow. Web.archive.org (2008-11-18). Retrieved on 2011-06-05.
  40. "Historical Price Query". August 14, 2009. Retrieved 2010-02-24.
  41. Silver. Goodfellow. Web.archive.org (2008-11-17). Retrieved on 2011-06-05.
  42. Titanium. Goodfellow. Web.archive.org (2008-11-15). Retrieved on 2011-06-05.
  43. "Titanium Page". 28 December 2007. Retrieved 2010-02-24.
  44. Zinc. Goodfellow. Web.archive.org (2008-11-18). Retrieved on 2011-06-05.
  45. Tamme, Rainer. Phase Change - Storage Systems (PDF). Workshop on Thermal Storage for Trough Power Systems — February 20–21, 2003, Golden CO, USA. Archived from the original (PDF) on October 23, 2011.
  46. Atul Sharma; V. V. Tyagi; C. R. Chen; D. Buddhi (February 2009). "Review on thermal energy storage with phase change materials and applications". Renewable and Sustainable Energy Reviews. 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005.
  47. "CrodaTherm Bio-based Phase Change Materials". www.crodatherm.com. Retrieved 2019-07-23.
  48. "BioPCM". Phase Change Energy Solutions, Inc. Retrieved February 21, 2018.
  49. "Infinite R". Insolcorp, LLC. Retrieved 2016-08-31.
  50. "TECHNICAL DATA SHEET OF HS 33N" (PDF).
  51. "Pluss". Pluss Advanced Technologies Pvt. Ltd.
  52. "TECHNICAL DATA SHEET – savE HS 26N" (PDF).
  53. "TECHNICAL DATA SHEET OF savE HS23N" (PDF).
  54. "TECHNICAL DATA SHEET OF savE HS18N" (PDF).
  55. "TECHNICAL DATA SHEET OF savE HS15N" (PDF).
  56. "TECHNICAL DATA SHEET OF savE HS10N" (PDF).
  57. "TECHNICAL DATA SHEET – savE HS 7N" (PDF).
  58. "TECHNICAL DATA SHEET OF savE HS01" (PDF).
  59. "TECHNICAL DATA SHEET – savE OM 03" (PDF).
  60. "TECHNICAL DATA SHEET OF savE FS03" (PDF).
  61. "TECHNICAL DATA SHEET – savE OM 05" (PDF).
  62. "TECHNICAL DATA SHEET OF savE FS05" (PDF).
  63. "TECHNICAL DATA SHEET – savE OM08" (PDF).
  64. "TECHNICAL DATA SHEET – savE OM 11" (PDF).
  65. "TECHNICAL DATA SHEET – savE OM 21" (PDF).
  66. "TECHNICAL DATA SHEET OF savE FS21" (PDF).
  67. "TECHNICAL DATA SHEET – savE HS 21" (PDF).
  68. "TECHNICAL DATA SHEET – savE HS 22" (PDF).
  69. "TECHNICAL DATA SHEET – savE HS 24" (PDF).
  70. "TECHNICAL DATA SHEET – savE HS 29" (PDF).
  71. "TECHNICAL DATA SHEET OF savE OM29" (PDF).
  72. "TECHNICAL DATA SHEET OF savE FS29" (PDF).
  73. "TECHNICAL DATA SHEET OF savE OM30" (PDF).
  74. "TECHNICAL DATA SHEET OF savE FS30" (PDF).
  75. "TECHNICAL DATA SHEET – savE OM 32" (PDF).
  76. "TECHNICAL DATA SHEET – savE HS 34" (PDF).
  77. "TECHNICAL DATA SHEET – savE OM 35a" (PDF).
  78. "TECHNICAL DATA SHEET OF savE OM37" (PDF).
  79. "TECHNICAL DATA SHEET OF savE OM46" (PDF).
  80. "TECHNICAL DATA SHEET OF savE OM48" (PDF).
  81. "TECHNICAL DATA SHEET OF savE OM50" (PDF).
  82. "TECHNICAL DATA SHEET OF savE OM55" (PDF).
  83. "TECHNICAL DATA SHEET OF savE OM65" (PDF).
  84. "TECHNICAL DATA SHEET OF savE FSM65" (PDF).
  85. "TECHNICAL DATA SHEET OF savE HS89" (PDF).
  86. "PureTemp -37 technical data sheet". PureTemp.
  87. "PureTemp -21 technical data sheet". PureTemp.
  88. "PureTemp -15 technical data sheet". PureTemp.
  89. "PureTemp -2 technical data sheet". PureTemp.
  90. "PureTemp 4 technical data sheet". PureTemp.
  91. "PureTemp 8 technical data sheet". PureTemp.
  92. "PureTemp 15 technical data sheet". PureTemp.
  93. "PureTemp 18 technical data sheet". PureTemp.
  94. "PureTemp 20 technical data sheet". PureTemp.
  95. "PureTemp 23 technical data sheet". PureTemp.
  96. "PureTemp 25 technical data sheet". PureTemp.
  97. "PureTemp 27 technical data sheet". PureTemp.
  98. "PureTemp 28 technical data sheet". PureTemp.
  99. "PureTemp 29 technical data sheet". PureTemp.
  100. "PureTemp 37 technical data sheet". PureTemp.
  101. "PureTemp 48 technical data sheet". PureTemp.
  102. "PureTemp 53 technical data sheet". PureTemp.
  103. "PureTemp 58 technical data sheet". PureTemp.
  104. "PureTemp 60 technical data sheet". PureTemp.
  105. "PureTemp 64 technical data sheet". PureTemp.
  106. "PureTemp 68 technical data sheet". PureTemp.
  107. "PureTemp 151 technical data sheet". PureTemp.
  108. "Home". www.honeywell.com.
  109. "Rubitherm GmbH".
  110. "Home". www.climator.com.
  111. "Mitsubishi Chemical Corporation".
  112. "CRISTOPIA Energy Systems". Archived from the original on 2001-05-16.
  113. "PCM Phase Change Material Materials Manufacturers". www.teappcm.com.
  114. "Phase Change Materials - BASF Dispersions & Pigments". Archived from the original on 2008-12-22.
  115. "Phase Change Materials: Thermal Management Solutions".
  116. "Phase Change Material Manufacturer". savENRG.
  117. "Microencapsulation Technology". Microtek Laboratories.
  118. Frederik Tudor the Ice King on ice transport during the 19th century
  119. Richard Trevithick's steam locomotive ran in 1804
  120. Amédée Bollée created steam cars beginning at 1873
  121. Tyagi, Vineet Veer; Buddhi, D. (2007). "PCM thermal storage in buildings: A state of art". Renewable and Sustainable Energy Reviews. 11 (6): 1146–1166. doi:10.1016/j.rser.2005.10.002.
  122. Aravind, Indulekha; Kumar, KP Narayana (2015-08-02). "How two low-cost, made-in-India innovations MiraCradle & Embrace Nest are helping save the lives of newborns". timesofindia-economictimes.
  123. "MiraCradle - Neonate Cooler". miracradle.com.
  124. Chatterjee, Rukmava; Beysens, Daniel; Anand, Sushant (2019). "Delaying Ice and Frost Formation Using Phase-Switching Liquids". Advanced Materials. 0 (17): 1807812. doi:10.1002/adma.201807812. ISSN 1521-4095. PMID 30873685.
  125. Omer, A (2008). "Renewable building energy systems and passive human comfort solutions". Renewable and Sustainable Energy Reviews. 12 (6): 1562–1587. doi:10.1016/j.rser.2006.07.010.

Sources

  • PHASE CHANGE MATERIAL (PCM) BASED ENERGY STORAGE MATERIALS AND GLOBAL APPLICATION EXAMPLES

Zafer URE M.Sc., C.Eng. MASHRAE HVAC Applications

  • Phase Change Material Based Passive Cooling Systems Design Principal and Global Application Examples

Zafer URE M.Sc., C.Eng. MASHRAE Passive Cooling Application

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.