Microanalysis
Microanalysis is the chemical identification and quantitative analysis of very small amounts of chemical substances (generally less than 10 mg or 1 ml) or very small surfaces of material (generally less than 1 cm2). One of the pioneers in the microanalysis of chemical elements was the Austrian Nobel Prize winner Fritz Pregl.[1]
Methods
The most known methods used in microanalysis include:
- Most of the spectroscopy methods: ultraviolet–visible spectroscopy, infrared spectroscopy, nuclear magnetic resonance, X-ray fluorescence, Energy-dispersive X-ray spectroscopy and mass spectrometry
- Most of the chromatography methods : high-performance liquid chromatography, Gel permeation chromatography;
- Some thermal analysis methods: differential scanning calorimetry, thermogravimetric analysis;
- Electrophoresis;
- Field flow fractionation;
- X-ray diffraction;
- Combustion analysis.
Advantages
Compared to normal analyses methods, microanalysis:
- Requires less time for preparation
- Requires less sample and solvent and thus produces less waste and is more cost effective.
Disadvantages
- Handling of small quantities is not always simple.
- Higher accuracy of weighing is necessary (e.g. use of accurate balance).
References
- http://nobelprize.org/nobel_prizes/chemistry/laureates/1923/index.html The Nobel Prize in Chemistry 1923. Nobelprize.org. Retrieved 2014-08-06
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.