List of nuclear power systems in space
This list of nuclear power systems in space includes nuclear power systems that were flown to space, or at least launched in an attempt to reach space. Such used nuclear power systems include:
- radioisotope heater units (RHU) (usually produce heat by spontaneous decay of 238
Pu
) - radioisotope thermoelectric generators (RTG) (usually produce heat by spontaneous decay of 238
Pu
and convert it to electricity using a thermoelectric generator) - miniaturized fission reactors (usually produce heat by controlled fission of highly enriched 235
U
and convert it to electricity using a thermionic converter)
Systems never launched are not included here, see Nuclear power in space.
Initial total power is provided as either electrical power (We) or thermal power (Wt), depending on the intended application.
Nation | Mission | Launched | Fate / location | Technology | Nuclear fuel | Power (nominal) | Ref |
---|---|---|---|---|---|---|---|
USA | Transit-4A | 1961 | Earth orbit | RTG SNAP-3B | 238 Pu | 2.7 We | [1] |
USA | Transit-4B | 1961 | Earth orbit | RTG SNAP-3B | 238 Pu | 2.7 We | [1] |
USA | Transit 5BN-1 | 1963 | Earth orbit | RTG SNAP-9A | 238 Pu | 25.2 We | [1] |
USA | Transit 5BN-2 | 1963 | Earth orbit | RTG SNAP-9A | 238 Pu | 26.8 We | [1] |
USA | Transit 5BN-3 | 1964 | Failed to reach orbit, burned up in atmosphere. | RTG SNAP-9A | 238 Pu | 25 We | [2] |
USA | SNAPSHOT | 1965 | low graveyard orbit in 1300 km height | fission reactor SNAP-10A | 235 U (uranium-zirconium hydride) | 500 We | [1] |
USA | Nimbus B (Nimbus-B1) | 1968-05-18 | crashed at launch, radioactive material from RTG recovered from ocean and reused | RTG SNAP-19B (2) | 238 Pu | 56 We | [1][3] |
USA | Nimbus 3 (Nimbus-B2) | 1969-04-14 | Earth re-entry 1972 | RTG SNAP-19B (2) | 238 Pu | 56 We | [1] |
USA | Nimbus IV | 1970 | Earth orbit | RTG SNAP-19 | [4] | ||
USA | Nimbus V | 1972 | Earth orbit | RTG SNAP-19 | [4] | ||
USA | Nimbus VI | 1975 | Earth orbit, damaged | RTG SNAP-19 | [4] | ||
USA | Nimbus VII | 1978 | Earth orbit, damaged | RTG SNAP-19 | [4] | ||
USA | Apollo 11 | 1969 | RHU (2) | 30 Wt | [1] | ||
USA | Apollo 12 ALSEP | 1969 | Lunar surface (Ocean of Storms)[5] | SNAP-27 | 238 Pu | 73.6 We | [1] |
USA | Apollo 13 ALSEP | 1970 | Earth re-entry (Pacific Ocean, Tonga Trench) | RTG SNAP-27 | 238 Pu | 73 We | [1] |
USA | Apollo 14 ALSEP | 1971 | Lunar surface (Fra Mauro) | RTG SNAP-27 | 238 Pu | 72.5 We | [1] |
USA | Apollo 15 ALSEP | 1971 | Lunar surface (Hadley–Apennine) | RTG SNAP-27 | 238 Pu | 74.7 We | [1] |
USA | Pioneer 10 | 1972 | Ejected from Solar System | RTG SNAP-19 (4) + RHU (12) | 238 Pu | 162.8 We + 12 Wt | [1] |
USA | Apollo 16 ALSEP | 1972 | Lunar surface (Descartes Highlands) | RTG SNAP-27 | 238 Pu | 70.9 We | [1] |
USA | TRAID-01-1X | 1972 | Earth orbit | RTG SNAP-19 | 238 Pu | 35.6 We | [1] |
USA | Apollo 17 ALSEP | 1972 | Lunar surface (Taurus–Littrow) | RTG SNAP-27 | 238 Pu | 75.4 We | [1] |
USA | Pioneer 11 | 1973 | Ejected from Solar System | RTG SNAP-19 (4) + RHU (12) | 238 Pu | 159.6 We + 12 Wt | [1] |
USA | Viking 1 | 1976 | Mars surface (Chryse Planitia) | lander modified RTG SNAP-19 (2) | 238 Pu | 84.6 We | [1] |
USA | Viking 2 | 1976 | Mars surface (Utopia Planitia) | lander modified RTG SNAP-19 (2) | 238 Pu | 86.2 We | [1] |
USA | LES-8 | 1976 | Near geostationary orbit | MHW-RTG (2) | 238 Pu | 307.4 We | [1] |
USA | LES-9 | 1976 | Near geostationary orbit | MHW-RTG (2) | 238 Pu | 308.4 We | [1] |
USA | Voyager 1 | 1977 | Ejected from Solar System | MHW-RTG (3) + RHU(9) | 238 Pu | 477.6 We + 9 Wt | [1] |
USA | Voyager 2 | 1977 | Ejected from Solar System | MHW-RTG (3) + RHU(9) | 238 Pu | 470.1 We + 9 Wt | [1] |
USA | Galileo | 1989 | Jupiter atmospheric entry | GPHS-RTG (2) | 576.8 We | [1] | |
USA | Ulysses | 1990 | Heliocentric orbit | GPHS-RTG | 283 We | [1] | |
USA | Cassini | 1997 | burned-up in Saturn's Atmosphere | GPHS-RTG (3) | 238 Pu | 887 We | |
USA | New Horizons | 2006 | Pluto and beyond | GPHS-RTG (1) | 238 Pu | 249.6 We | |
USA | MSL/Curiosity rover | 2011 | Mars surface | MMRTG | 238 Pu | 113 We | |
Soviet Union | Kosmos 84 | 1965 | Earth orbit | Orion-1 RTG | 210 Po | [4][6] | |
Soviet Union | Kosmos 90 | 1965 | Earth orbit | Orion-1 RTG | 210 Po | [4][6] | |
Soviet Union | Kosmos 198 (RORSAT) | 1967-12-27 | Earth orbit | fission reactor BES-5 ?? | 235 U | [4][7] | |
Soviet Union | Kosmos 209 (RORSAT) | 1968-03-22 | Earth orbit | fission reactor BES-5 ?? | 235 U | [4][7] | |
Soviet Union | Kosmos 305 (Moon) | 1969-10-22 | failed to leave Earth orbit towards the Moon, burned up in atmosphere 2 days after launch | ?? | ?? | ?? | [4][8][9][10] |
Soviet Union | Kosmos 367 (RORSAT) | 1970-10-03 | Earth orbit, 579 mile altitude | fission reactor BES-5 ?? | 235 U | 2 kWe | [4][7][11] |
Soviet Union | Kosmos 402 (RORSAT) | 1971 | Earth orbit | fission reactor BES-5 ?? | 235 U | 2 kWe | [4][7] |
Soviet Union | Kosmos 469 (RORSAT) | 1971 | high orbit | fission reactor BES-5 (officially confirmed) | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 516 | 1972 | High orbited 1972 | fission reactor BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | RORSAT | 1973 | Launch failure over Pacific Ocean, near Japan | fission reactor BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 626 | 1973 | Earth orbit | fission reactor BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 651 | 1974 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 654 | 1974 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 723 | 1975 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 724 | 1975 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 785 | 1975 | failed after reaching orbit | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 860 | 1976 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 861 | 1976 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 952 | 1977 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 954 | 1977 | exploded on re-entry 1978 (over Canada) | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1176 | 1980 | 11788/11971 Earth orbit 870–970 km | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1249 | 1981 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1266 | 1981 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1299 | 1981 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1402 | 1982 | Earth re-entry 1983 (South Atlantic) | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1372 | 1982 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1365 | 1982 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1412 | 1982 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1461 | 1983 | earth orbit, exploded | BES-5 | 235 U | 2 kWe | [4] |
Soviet Union | Kosmos 1597 | 1984 | BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1607 | 1984 | High orbited 1985 | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1670 | 1985 | High orbited 1985 | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1677 | 1985 | High orbited 1985 | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1736 | 1986 | High orbited 1986 | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1771 | 1986 | High orbited 1986 | BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1900 | 1987 | earth orbit, 454 mile altitude | BES-5 | 235 U | 2 kWe | [12][11] |
Soviet Union | Kosmos 1860 | 1987 | fission reactor BES-5 | 235 U | 2 kWe | [12] | |
Soviet Union | Kosmos 1932 | 1988 | Earth orbit 800–900 km | fission reactor BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1682 | 1985 | High orbited 1986 | fission reactor BES-5 | 235 U | 2 kWe | [12] |
Soviet Union | Kosmos 1818 (RORSAT) | 1987 | destroyed in high earth orbit | fission reactor Topaz-I | 235 U | 5 kWe | [13] |
Soviet Union | Kosmos 1867 (RORSAT) | 1987 | parked in high earth orbit | fission reactor Topaz-I | 235 U | 5 kWe | [14] |
Soviet Union | Lunokhod 201 | 1969-02-19 | rocket exploded at launch, radioactive material from RHU spread over Russia | RHU | 210 Po | [15] | |
Soviet Union | Lunokhod 1 | 1970 | Lunar surface | RHU | 210 Po | [15] | |
Soviet Union | Lunokhod 2 | 1973 | Lunar surface | RHU | 210 Po | [15] | |
Russia | Mars 96 | 1996 | Launch failure, entered Pacific Ocean | RHU (4) | 238 Pu | [15] | |
China | Chang'e 3 and Yutu | 2013 | Lunar surface | several RHU's, RTG (??) (some electricity provided by solar panels) | 238 Pu | [16] |
See also
- Outer Space Treaty
- List of high-altitude nuclear explosions
- Nuclear power in space
- List of artificial radiation belts
- Category:Nuclear-powered robots
References
- "Atomic Power in Space II: A History 2015" (PDF). inl.gov. Idaho National Laboratory. September 2015. Retrieved 13 June 2018.
- "Transit". Encyclopedia Astronautica. Archived from the original on 24 January 2013. Retrieved 7 May 2013.
- A. Angelo Jr. and D. Buden (1985). Space Nuclear Power. Krieger Publishing Company. ISBN 0-89464-000-3.
- Hagen, Regina (November 8, 1998). "Nuclear Powered Space Missions - Past and Future". space4peace.org. Retrieved 13 June 2018.
- David M. Harland (2011). Apollo 12 - On the Ocean of Storms. Springer Science & Business Media. p. 269. ISBN 978-1-4419-7607-9.
- Bennett, Gary L. (August 6, 1989). "A LOOK AT THE SOVIET SPACE NUCLEAR POWER PROGRAM" (PDF). International Forum on Energy Engineering. NASA Propulsion, Power and Energy Division. IECEC-89. Retrieved 25 June 2018.
- Sven Grahn. "The US-A program (Radar Ocean Reconnaissance Satellites)". svengrahn.pp.se. Retrieved 2020-05-12.
- Encyclopedia Astronautica article on the US-A RORSAT programme.
- http://www.zarya.info/Diaries/Luna/Luna.php
- https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1969-092A
- "Top 10 Space Age Radiation Incidents". 20 January 2012.
- "US-A". Encyclopedia Astronautica. Mark Wade. 14 September 2007. Archived from the original on 2007-09-14. Retrieved 13 June 2018.
- "Old Russian Nuclear Satellite Returns". Spacedaily.com. Retrieved 2016-02-23.
- Lardier, Christian; Barensky, Stefan (March 27, 2018). The Proton Launcher: History and Developments. Wiley-ISTE. ISBN 978-1786301765.
- Karacalıoğlu, Göktuğ (January 6, 2014). "Energy Resources for Space Missions". Space Safety Magazine. Retrieved January 18, 2014.
- SUN, ZeZhou; JIA, Yang; ZHANG, He (November 2013). "Technological advancements and promotion roles of Chang'e-3 lunar probe mission". Science China. 56 (11): 2702–2708. Bibcode:2013ScChE..56.2702S. doi:10.1007/s11431-013-5377-0. Archived from the original (PDF) on 29 March 2014. Retrieved 25 December 2013.
- "Chang'e-3 - Satellite Missions". earth.esa.int. ESA. Retrieved 12 June 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.