Isotopes of zinc
Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-five radioisotopes have been characterised with the most abundant and stable being 65Zn with a half-life of 244.26 days, and 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar, standard(Zn) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zinc has been proposed as a "salting" material for nuclear weapons. A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 65Zn with a half-life of 244 days and produce approximately 1.115 MeV[2] of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been built, tested, or used.[3]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 4] |
Natural abundance (mole fraction) | |
---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||
54Zn | 30 | 24 | 53.99295(43)# | 2p | 52Ni | 0+ | |||
55Zn | 30 | 25 | 54.98398(27)# | 20# ms [>1.6 μs] | 2p | 53Ni | 5/2−# | ||
β+ | 55Cu | ||||||||
56Zn | 30 | 26 | 55.97238(28)# | 36(10) ms | β+ | 56Cu | 0+ | ||
57Zn | 30 | 27 | 56.96479(11)# | 38(4) ms | β+, p (65%) | 56Ni | 7/2−# | ||
β+ (35%) | 57Cu | ||||||||
58Zn | 30 | 28 | 57.95459(5) | 84(9) ms | β+, p (60%) | 57Ni | 0+ | ||
β+ (40%) | 58Cu | ||||||||
59Zn | 30 | 29 | 58.94926(4) | 182.0(18) ms | β+ (99%) | 59Cu | 3/2− | ||
β+, p (1%) | 58Ni | ||||||||
60Zn[n 8] | 30 | 30 | 59.941827(11) | 2.38(5) min | β+ | 60Cu | 0+ | ||
61Zn | 30 | 31 | 60.939511(17) | 89.1(2) s | β+ | 61Cu | 3/2− | ||
61m1Zn | 88.4(1) keV | <430 ms | 1/2− | ||||||
61m2Zn | 418.10(15) keV | 140(70) ms | 3/2− | ||||||
61m3Zn | 756.02(18) keV | <130 ms | 5/2− | ||||||
62Zn | 30 | 32 | 61.934330(11) | 9.186(13) h | β+ | 62Cu | 0+ | ||
63Zn | 30 | 33 | 62.9332116(17) | 38.47(5) min | β+ | 63Cu | 3/2− | ||
64Zn | 30 | 34 | 63.9291422(7) | Observationally Stable[n 9] | 0+ | 0.4917(75) | |||
65Zn | 30 | 35 | 64.9292410(7) | 243.66(9) d | β+ | 65Cu | 5/2− | ||
65mZn | 53.928(10) keV | 1.6(6) μs | (1/2)− | ||||||
66Zn | 30 | 36 | 65.9260334(10) | Stable | 0+ | 0.2773(98) | |||
67Zn | 30 | 37 | 66.9271273(10) | Stable | 5/2− | 0.0404(16) | |||
68Zn | 30 | 38 | 67.9248442(10) | Stable | 0+ | 0.1845(63) | |||
69Zn | 30 | 39 | 68.9265503(10) | 56.4(9) min | β− | 69Ga | 1/2− | ||
69mZn | 438.636(18) keV | 13.76(2) h | IT (96.7%) | 69Zn | 9/2+ | ||||
β− (3.3%) | 69Ga | ||||||||
70Zn | 30 | 40 | 69.9253193(21) | Observationally Stable[n 10] | 0+ | 0.0061(10) | |||
71Zn | 30 | 41 | 70.927722(11) | 2.45(10) min | β− | 71Ga | 1/2− | ||
71mZn | 157.7(13) keV | 3.96(5) h | β− (99.95%) | 71Ga | 9/2+ | ||||
IT (.05%) | 71Zn | ||||||||
72Zn | 30 | 42 | 71.926858(7) | 46.5(1) h | β− | 72Ga | 0+ | ||
73Zn | 30 | 43 | 72.92978(4) | 23.5(10) s | β− | 73Ga | (1/2)− | ||
73m1Zn | 195.5(2) keV | 13.0(2) ms | (5/2+) | ||||||
73m2Zn | 237.6(20) keV | 5.8(8) s | β− | 73Ga | (7/2+) | ||||
IT | 73Zn | ||||||||
74Zn | 30 | 44 | 73.92946(5) | 95.6(12) s | β− | 74Ga | 0+ | ||
75Zn | 30 | 45 | 74.93294(8) | 10.2(2) s | β− | 75Ga | (7/2+)# | ||
76Zn | 30 | 46 | 75.93329(9) | 5.7(3) s | β− | 76Ga | 0+ | ||
77Zn | 30 | 47 | 76.93696(13) | 2.08(5) s | β− | 77Ga | (7/2+)# | ||
77mZn | 772.39(12) keV | 1.05(10) s | IT (50%) | 77Zn | 1/2−# | ||||
β− (50%) | 77Ga | ||||||||
78Zn | 30 | 48 | 77.93844(10) | 1.47(15) s | β− | 78Ga | 0+ | ||
78mZn | 2673(1) keV | 319(9) ns | (8+) | ||||||
79Zn | 30 | 49 | 78.94265(28)# | 0.995(19) s | β− (98.7%) | 79Ga | (9/2+) | ||
β−, n (1.3%) | 78Ga | ||||||||
80Zn | 30 | 50 | 79.94434(18) | 545(16) ms | β− (99%) | 80Ga | 0+ | ||
β−, n (1%) | 79Ga | ||||||||
81Zn | 30 | 51 | 80.95048(32)# | 290(50) ms | β− (92.5%) | 81Ga | 5/2+# | ||
β−, n (7.5%) | 80Ga | ||||||||
82Zn | 30 | 52 | 81.95442(54)# | 100# ms [>300 ns] | β− | 82Ga | 0+ | ||
83Zn | 30 | 53 | 82.96103(54)# | 80# ms [>300 ns] | 5/2+# |
- mZn – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
-
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- Final product of the silicon-burning process; its production is endothermic and accelerates the star's collapse
- Believed to undergo β+β+ decay to 64Ni with a half-life over 2.3×1018 a
- Believed to undergo β−β− decay to 70Ge with a half-life over 1.3×1016 a
References
- Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- Roost, E.; Funck, E.; Spernol, A.; Vaninbroukx, R. (1972). "The decay of 65Zn". Zeitschrift für Physik. 250 (5): 395–412. Bibcode:1972ZPhy..250..395D. doi:10.1007/BF01379752.
- D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.