Gerald Jay Sussman

Gerald Jay Sussman (born February 8, 1947) is the Panasonic Professor of Electrical Engineering at the Massachusetts Institute of Technology (MIT). He received his S.B. and Ph.D. degrees in mathematics from MIT in 1968 and 1973 respectively. He has been involved in artificial intelligence (AI) research at MIT since 1964. His research has centered on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing it to provide more effective methods of science and engineering education. Sussman has also worked in computer languages, in computer architecture and in Very Large Scale Integration (VLSI) design.[1]

Professor

Gerald Jay Sussman

Ph.D.
Gerry Sussman appearing in a 1986 video recording of the SICP lectures
Born (1947-02-08) February 8, 1947
NationalityUnited States
EducationS.B.; MIT (1968)
Ph.D.; MIT (1973)
Known forArtificial intelligence, Structure and Interpretation of Computer Programs
Spouse(s)Julie Sussman
AwardsIJCAI Computers and Thought Award (1981)
ACM Fellow (1990)
Scientific career
FieldsCognitive science, electrical engineering, computer science
InstitutionsMIT
ThesisA Computational Model of Skill Acquisition (1973)
Doctoral advisorSeymour Papert
Doctoral students
Websitegroups.csail.mit.edu/mac/users/gjs

Education

Sussman attended the Massachusetts Institute of Technology as an undergraduate and received his S.B. in mathematics in 1968. He continued his studies at MIT and obtained a Ph.D. in 1973, also in mathematics, under the supervision of Seymour Papert. His doctoral thesis was titled "A Computational Model of Skill Acquisition" focusing on artificial intelligence and machine learning, using a computational performance model named HACKER.[2]

Academic work

Sussman is a coauthor (with Hal Abelson and Julie Sussman) of the introductory computer science textbook Structure and Interpretation of Computer Programs. It was used at MIT for several decades, and has been translated into several languages.

Sussman's contributions to artificial intelligence include problem solving by debugging almost-right plans, propagation of constraints applied to electrical circuit analysis and synthesis, dependency-based explanation and dependency-based backtracking, and various language structures for expressing problem-solving strategies. Sussman and his former student, Guy L. Steele Jr., invented the programming language Scheme in 1975.

Sussman saw that artificial intelligence ideas can be applied to computer-aided design (CAD). Sussman developed, with his graduate students, sophisticated computer-aided design tools for Very Large Scale Integration (VLSI). Steele made the first Scheme chips in 1978. These ideas and the AI-based CAD technology to support them were further developed in the Scheme chips of 1979 and 1981. The technique and experience developed were then used to design other special-purpose computers. Sussman was the principal designer of the Digital Orrery, a machine designed to do high-precision integrations for orbital mechanics experiments. The Orrery was designed and built by a few people in a few months, using AI-based simulation and compiling tools.[3]

Using the Digital Orrery, Sussman has worked with Jack Wisdom to discover numerical evidence for chaotic motions in the outer planets. The Digital Orrery is now retired at the Smithsonian Institution in Washington, DC. Sussman was also the lead designer of the Supercomputer Toolkit, another multiprocessor computer optimized for evolving of ordinary differential equations. The Supercomputer Toolkit was used by Sussman and Wisdom to confirm and extend the discoveries made with the Digital Orrery to include the entire planetary system. [4] [5]

Sussman has pioneered the use of computational descriptions to communicate methodological ideas in teaching subjects in Electrical Circuits and in Signals and Systems. Over the past decade Sussman and Wisdom have developed a subject that uses computational techniques to communicate a deeper understanding of advanced classical mechanics. In Computer Science: Reflections on the Field, Reflections from the Field, he writes "... computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. Students are expected to read the programs and to extend them and to write new ones. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results." Sussman and Wisdom, with Meinhard Mayer, have produced a textbook, Structure and Interpretation of Classical Mechanics, to capture these new ideas.

Sussman and Abelson have also been a part of the free software movement, including releasing MIT/GNU Scheme as free software[6] and serving on the Board of Directors of the Free Software Foundation.[7]

Sussman's work is presented in many videos, such as: with Hal Abelson in a full 20 lecture version of MIT's SICP course,[8] for LispNYC,[9][10] at the International Conference on Complex Systems,[11] for ArsDigita University,[12] and giving the keynote talk at a Strange Loop conference.[13][14]

Awards and organizations

For his contributions to computer science education, Sussman received the Association for Computing Machinery (ACM) Karl Karlstrom Outstanding Educator Award in 1990, and the Amar G. Bose award for teaching in 1991.

Sussman and Hal Abelson are the only founding directors still active on the board of directors of the Free Software Foundation (FSF).

Sussman is a fellow of the Institute of Electrical and Electronics Engineers (IEEE), a member of the National Academy of Engineering (NAE), a fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a fellow of the Association for Computing Machinery (ACM), a fellow of the American Association for the Advancement of Science (AAAS), a fellow of the New York Academy of Sciences (NYAS), and a fellow of the American Academy of Arts and Sciences. He is also a bonded locksmith, a life member of the American Watchmakers-Clockmakers Institute (AWI), a member of the Massachusetts Watchmakers-Clockmakers Association (MWCA), a member of the Amateur Telescope Makers of Boston (ATMOB), and a member of the American Radio Relay League (ARRL).

Personal life

Gerald Sussman is married to computer programmer Julie Sussman.[15] She is an MIT graduate and has also studied many languages including French, Russian, German, Chinese, Japanese, Norwegian, Swedish, Dutch, Hebrew, and Serbo-Croatian. She has written books on software and a book on everyday Chinese characters.[16]

See also

References

  1. Sussman, Gerald Jay. "Biographical sketch of Gerald Jay Sussman". Massachusetts Institute of Technology. Retrieved 2019-09-09.
  2. Sussman, Gerald (1973). A Computational Model of Skill Acquisition (Ph.D.). Massachusetts Institute of Technology. hdl:1721.1/6894.
  3. Applegate, James; Douglas, M.; Gursel, Y.; Hunter, P.; Seitz, C.; Sussman, Gerald Jay (September 1985). "A Digital Orrery". IEEE Transactions on Computers. C-34 (9): 822–831.
  4. Applegate, James; Douglas, M.; Gursel, Y.; Sussman, Gerald Jay; Wisdom, Jack (July 1986). "The Outer Solar System for 200 Million Years". Astronomical Journal. 92: 176–194.
  5. Sussman, Gerald Jay; Wisdom, Jack (July 1988). "Numerical evidence that the motion of Pluto is chaotic". Science. 241.
  6. "MIT/GNU Scheme". Free Software Foundation. Retrieved 2019-09-11.
  7. "Staff and Board". Free Software Foundation. Retrieved 2019-09-11.
  8. Sussman, Gerald (July 1986). MIT OpenCourseWare: Video Lectures (videotape). Massachusetts: Massachusetts Institute of Technology.
  9. Sussman, Gerald (January 2016). Flexible Systems, The Power of Generic Operations (videotape). LispNYC. Retrieved 2019-09-11.
  10. "LispNYC". LispNYC. Retrieved 2019-09-11.
  11. Sussman, Gerald (June 11, 2002). Formalizing Science (videotape). New England Complex Systems Institute (NECSI). Retrieved 2019-09-11.
  12. Sussman, Gerald (2001). The Legacy of Computer Science (videotape).
  13. Sussman, Gerald (September 19, 2011). We Really Don't Know How To Compute! (videotape). InfoQ.
  14. "Strange Loop". Strange Loop. Retrieved 2019-09-11.
  15. Aquino, Mario (2011-09-22). "The teacher". Blogger. Retrieved 2019-09-09.
  16. Sussman, Julie (1994). I can read that: a traveler's introduction to Chinese characters. San Francisco: China Books. ISBN 0835125335. OCLC 31829743.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.