Flavocytochrome c sulfide dehydrogenase

Flavocytochrome c sulfide dehydrogenase, also known as Sulfide-cytochrome-c reductase (flavocytochrome c) (EC 1.8.2.3), is an enzyme with systematic name hydrogen-sulfide:flavocytochrome c oxidoreductase.[1][2][3][4][5][6] It is found in sulfur-oxidising bacteria such as the purple phototrophic bacteria Allochromatium vinosum.[4][7] This enzyme catalyses the following chemical reaction:

hydrogen sulfide + 2 ferricytochrome c sulfur + 2 ferrocytochrome c + 2 H+
Sulfide-cytochrome-c reductase (flavocytochrome c)
Structure of the flavocytochrome c sulfide dehydrogenase from the purple phototrophic bacterium Allochromatium vinosum (PDB: 1FCD).
Identifiers
EC number1.8.2.3
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Flavocytochrome c sulfide dehydrogenase, flavin-binding
Identifiers
SymbolFCSD-flav_bind
PfamPF09242
InterProIPR015323
SCOP21fcd / SCOPe / SUPFAM

These enzymes are heterodimers of a flavoprotein (fccB Q06530) and a dihaem cytochrome (fccA; Q06529) that carry out hydrogen sulfide-dependent cytochrome C reduction. The dihaem cytochrome folds into two domains, each of which resembles mitochondrial cytochrome c, with the two haem groups bound to the interior of the subunit. The flavoprotein subunit has a glutathione reductase-like fold consisting of a beta(3,4)-alpha(3) core, and an alpha+beta sandwich. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. The flavoprotein contains a C-terminal domain required for binding to flavin, and subsequent electron transfer.[4] Electrons are transferred from the flavin to one of the haem groups in the cytochrome. Both FAD and heme C are covalently bound to the protein.

References

  1. Kusai K, Yamanaka T (November 1973). "The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 325 (2): 304–14. doi:10.1016/0005-2728(73)90106-0. PMID 4357558.
  2. Fukumori Y, Yamanaka T (June 1979). "Flavocytochrome c of Chromatium vinosum. Some enzymatic properties and subunit structure". Journal of Biochemistry. 85 (6): 1405–14. doi:10.1093/oxfordjournals.jbchem.a132467. PMID 222744.
  3. Gray GO, Gaul DF, Knaff DB (April 1983). "Partial purification and characterization of two soluble c-type cytochromes from Chromatium vinosum". Archives of Biochemistry and Biophysics. 222 (1): 78–86. doi:10.1016/0003-9861(83)90504-0. PMID 6301383.
  4. Chen ZW, Koh M, Van Driessche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA, Mathews FS (October 1994). "The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium". Science. 266 (5184): 430–2. doi:10.1126/science.7939681. PMID 7939681.
  5. de Jong GA, Robertson LA, Kuenen GJ (May 1998). "Purification and characterization of sulfide dehydrogenase from alkaliphilic chemolithoautotrophic sulfur-oxidizing bacteria". FEBS Letters. 427 (1): 11–4. doi:10.1016/S0014-5793(98)00379-2. PMID 9613590. S2CID 2818096.
  6. Kostanjevecki V, Brigé A, Meyer TE, Cusanovich MA, Guisez Y, van Beeumen J (June 2000). "A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospira vacuolata". Journal of Bacteriology. 182 (11): 3097–103. doi:10.1128/jb.182.11.3097-3103.2000. PMC 94494. PMID 10809687.
  7. Quentmeier A, Hellwig P, Bardischewsky F, Wichmann R, Friedrich CG (November 2004). "Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus". Biochemistry. 43 (46): 14696–703. doi:10.1021/bi048568y. PMID 15544340.
This article incorporates text from the public domain Pfam and InterPro: IPR015323
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.