Direct image with compact support

In mathematics, in the theory of sheaves the direct image with compact (or proper) support is an image functor for sheaves. It is one of Grothendieck's six operations.

Definition

Let f: XY be a continuous mapping of topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support

f!: Sh(X) Sh(Y)

sends a sheaf F on X to f!(F) defined by

f!(F)(U) := {sF(f 1(U)) | f|supp(s): supp(s)  U is proper},

where U is an open subset of Y. The functoriality of this construction follows from the very basic properties of the support and the definition of sheaves.

Properties

If f is proper, then f! equals f. In general, f!(F) is only a subsheaf of f(F)

References

  • Iversen, Birger (1986), Cohomology of sheaves, Universitext, Berlin, New York: Springer-Verlag, ISBN 978-3-540-16389-3, MR 0842190, esp. section VII.1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.