Cell-mediated immunity

Cell-mediated immunity is an immune response that does not involve antibodies. Rather, cell-mediated immunity is the activation of phagocytes, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen.

History

In the late 19th century Hippocratic tradition medicine system, the immune system was imagined into two branches: humoral immunity, for which the protective function of immunization could be found in the humor (cell-free bodily fluid or serum) and cellular immunity, for which the protective function of immunization was associated with cells. CD4 cells or helper T cells provide protection against different pathogens. Naive T cells, which are immature T cells that have yet to encounter an antigen, are converted into activated effector T cells after encountering antigen-presenting cells (APCs). These APCs, such as macrophages, dendritic cells, and B cells in some circumstances, load antigenic peptides onto the MHC of the cell, in turn presenting the peptide to receptors on T cells. The most important of these APCs are highly specialized dendritic cells; conceivably operating solely to ingest and present antigens. [1] Activated effector T cells can be placed into three functioning classes, detecting peptide antigens originating from various types of pathogen: The first class being 1) Cytotoxic T cells, which kill infected target cells by apoptosis without using cytokines, 2) Th1 cells, which primarily function to activate macrophages, and 3) Th2 cells, which primarily function to stimulate B cells into producing antibodies.[1]

In another ideology, the innate immune system and the adaptive immune system each comprise both humoral and cell-mediated components.

Synopsis

Cellular immunity protects the body through:

Cell-mediated immunity is directed primarily at microbes that survive in phagocytes and microbes that infect non-phagocytic cells. It is most effective in removing virus-infected cells, but also participates in defending against fungi, protozoans, cancers, and intracellular bacteria. It also plays a major role in transplant rejection.

See also

References

  1. Janeway, Charles; Travers, Paul; Walport, Mark; Shlomchik, Mark (2001). Immunobiology (5th ed.). New York: Garland Science. ISBN 978-0-8153-3642-6.
  2. Eissmann, Philipp. "Natural Killer Cells". British Society for Immunology. British Society for Immunology. Retrieved 8 November 2018.
  3. Saldana, José. "Macrophages". British Society for Immunology. British Society for Immunology. Retrieved 8 November 2018.

Bibliography

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.