10 Canum Venaticorum
10 Canum Venaticorum is the Flamsteed designation for an ordinary star in the northern constellation of Canes Venatici. It has an apparent visual magnitude of 5.95,[2] which, according to the Bortle scale, can be seen with the naked eye from suburban locations. Based upon an annual parallax shift of 0.0569 arcseconds,[1] this system is 57.3 light-years (17.57 parsecs) from Sun. It is drifting further away with a radial velocity of +80 km/s.[4]
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Canes Venatici |
Right ascension | 12h 44m 59.40507s[1] |
Declination | +39° 16′ 44.0983″[1] |
Apparent magnitude (V) | 5.95[2] |
Characteristics | |
Spectral type | G0 V[2] |
U−B color index | –0.03[3] |
B−V color index | +0.55[3] |
Astrometry | |
Radial velocity (Rv) | +80.3[4] km/s |
Proper motion (μ) | RA: –359.785[1] mas/yr Dec.: +138.994[1] mas/yr |
Parallax (π) | 56.9309 ± 0.0730[1] mas |
Distance | 57.29 ± 0.07 ly (17.57 ± 0.02 pc) |
Absolute magnitude (MV) | 4.76[5] |
Details | |
Mass | 0.87+0.04 −0.03[6] M☉ |
Radius | 0.98±0.02[1] R☉ |
Luminosity | 1.104±0.002[1] L☉ |
Surface gravity (log g) | 4.29[2] cgs |
Temperature | 5,968+58 −41[1] K |
Metallicity [Fe/H] | –0.53[2] dex |
Rotation | 13 days[5] |
Rotational velocity (v sin i) | 8.11[7] km/s |
Age | 6.3[2] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
The stellar classification of 10 Canum Venaticorum is G0 V,[2] indicating that it is a G-type main sequence star that is fusing hydrogen into helium at its core to generate energy. The NStars project found a similar class of F9V Fe−0.3,[9] indicating a mild underabundance of iron. It is older than the Sun, with an estimated age of six billion years.[2] The star has around 98%[1] of the Sun's radius and 87%[6] of the solar mass. It rotates about the axis an average of once every 13 days,[5] with a projected rotational velocity along the equator of 8 km/s.[7] The abundance of elements other than hydrogen and helium is lower than in the Sun.[2] The effective temperature of the stellar atmosphere is 5,968 K,[1] giving it the yellow hue of a G-type star.[10]
An excess of infrared emission at a wavelength of 70 μm suggests the presence of a debris disk.[11] The best fit disk model suggest a broad dust annulus with a peak brightness at a radius of 53.7 AU, that is inclined by an angle of 56° to the line of sight from the Earth along a position angle of 111.2°.[5]
References
- Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
- Maldonado, J.; et al. (May 2012), "Metallicity of solar-type stars with debris discs and planets", Astronomy and Astrophysics, 541, arXiv:1202.5884, Bibcode:2012A&A...541A..40M, doi:10.1051/0004-6361/201218800.
- Johnson, H. L.; et al. (1966), "UBVRIJKL photometry of the bright stars", Communications of the Lunar and Planetary Laboratory, 4 (99), Bibcode:1966CoLPL...4...99J.
- Nordström, B.; et al. (May 2004), "The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14,000 F and G dwarfs", Astronomy and Astrophysics, 418: 989–1019, arXiv:astro-ph/0405198, Bibcode:2004A&A...418..989N, doi:10.1051/0004-6361:20035959.
- Marshall, J. P.; et al. (October 2014), "Interpreting the extended emission around three nearby debris disc host stars", Astronomy & Astrophysics, 570: 13, arXiv:1408.5649, Bibcode:2014A&A...570A.114M, doi:10.1051/0004-6361/201424517, A114.
- Ramírez, I.; et al. (September 2012). "Lithium Abundances in nearby FGK Dwarf and Subgiant Stars: Internal Destruction, Galactic Chemical Evolution, and Exoplanets". The Astrophysical Journal. 756 (1): 46. arXiv:1207.0499. Bibcode:2012ApJ...756...46R. doi:10.1088/0004-637X/756/1/46.
- Martínez-Arnáiz, R.; et al. (September 2010), "Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter" (PDF), Astronomy and Astrophysics, 520: A79, arXiv:1002.4391, Bibcode:2010A&A...520A..79M, doi:10.1051/0004-6361/200913725.
- "10 CVn -- High proper-motion Star", SIMBAD Astronomical Database, Centre de Données astronomiques de Strasbourg, retrieved 2014-01-26.
- Gray, R. O.; et al. (July 2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Northern Sample I". The Astronomical Journal. 132 (1): 161–170. arXiv:astro-ph/0603770. Bibcode:2006AJ....132..161G. doi:10.1086/504637.
- "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, archived from the original on March 10, 2012, retrieved 2012-01-16.
- Trilling, D. E.; et al. (February 2008), "Debris Disks around Sun-like Stars", The Astrophysical Journal, 674 (2): 1086–1105, arXiv:0710.5498, Bibcode:2008ApJ...674.1086T, doi:10.1086/525514.