Young's convolution inequality
In mathematics, Young's convolution inequality is a mathematical inequality about the convolution of two functions,[1] named after William Henry Young.
Statement
Euclidean Space
In real analysis, the following result is called Young's convolution inequality:[2]
Suppose f is in Lp(Rd) and g is in Lq(Rd) and
with 1 ≤ p, q ≤ r ≤ ∞ . Then
Here the star denotes convolution, Lp is Lebesgue space, and
denotes the usual Lp norm.
Equivalently, if and then
Generalizations
Young's convolution inequality has a natural generalization in which we replace by a unimodular group . If we let be a bi-invariant Haar measure on and we let or be integrable functions, then we define by
Then in this case, Young's inequality states that for and and such that
we have a bound
Equivalently, if and then
Since is in fact a locally compact abelian group (and therefore unimodular) with the Lebesgue measure the desired Haar measure, this is in fact a generalization.
Applications
An example application is that Young's inequality can be used to show that the heat semigroup is a contracting semigroup using the L2 norm (i.e. the Weierstrass transform does not enlarge the L2 norm).
Proof
Proof by Hölder's inequality
Young's inequality has an elementary proof with the non-optimal constant 1.[3]
We assume that the functions are nonnegative and integrable, where is a unimodular group endowed with a bi-invariant Haar measure . We use the fact that for any measurable . Since
By the Hölder inequality for three functions we deduce that
The conclusion follows then by left-invariance of the Haar measure, the fact that integrals are preserved by inversion of the domain, and by Fubini's theorem.
Proof by interpolation
Young's inequality can also be proved by interpolation; see the article on Riesz–Thorin interpolation for a proof.
Sharp constant
In case p, q > 1 Young's inequality can be strengthened to a sharp form, via
where the constant cp,q < 1.[4][5][6] When this optimal constant is achieved, the function and are multidimensional Gaussian functions.
Notes
- Young, W. H. (1912), "On the multiplication of successions of Fourier constants", Proceedings of the Royal Society A, 87 (596): 331–339, doi:10.1098/rspa.1912.0086, JFM 44.0298.02, JSTOR 93120
- Bogachev, Vladimir I. (2007), Measure Theory, I, Berlin, Heidelberg, New York: Springer-Verlag, ISBN 978-3-540-34513-8, MR 2267655, Zbl 1120.28001, Theorem 3.9.4
- Lieb, Elliott H.; Loss, Michael (2001). Analysis. Graduate Studies in Mathematics (2nd ed.). Providence, R.I.: American Mathematical Society. p. 100. ISBN 978-0-8218-2783-3. OCLC 45799429.
- Beckner, William (1975). "Inequalities in Fourier Analysis". Annals of Mathematics. 102 (1): 159–182. doi:10.2307/1970980. JSTOR 1970980.
- Brascamp, Herm Jan; Lieb, Elliott H (1976-05-01). "Best constants in Young's inequality, its converse, and its generalization to more than three functions". Advances in Mathematics. 20 (2): 151–173. doi:10.1016/0001-8708(76)90184-5.
- Fournier, John J. F. (1977), "Sharpness in Young's inequality for convolution", Pacific J. Math., 72 (2): 383–397, doi:10.2140/pjm.1977.72.383, MR 0461034, Zbl 0357.43002
External links
- Young's Inequality for Convolutions at ProofWiki