Yee Whye Teh

Yee Whye Teh is a Professor of Statistical Machine Learning in the Department of Statistics at the University of Oxford. Prior to 2012 he was a reader at the Gatsby Computational Neuroscience Unit at University College London. His work is primarily in machine learning.

Yee Whye Teh
Alma materUniversity of Waterloo B.Math. (1997)
University of Toronto Ph.D. (2003)
Known forHierarchical Dirichlet process
deep belief network
Scientific career
FieldsMachine Learning
InstitutionsUniversity of Oxford
DeepMind
Doctoral advisorGeoffrey Hinton (Toronto)
Websitewww.stats.ox.ac.uk/~teh

Research

He was one of the original developers of deep belief networks and of hierarchical Dirichlet processes.

Honors

He was a keynote lecturer at UAI 2019, and was invited to give the Breiman lecture at NeurIPS 2017 (formally known as NIPS), on the topic Bayesian Deep Learning and Deep Bayesian Learning. He was program co-chair of ICML 2017, one of the premier conferences in machine learning.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.