Workshop on Numerical Ranges and Numerical Radii
Workshop on Numerical Ranges and Numerical Radii (WONRA) is a biennial workshop series on numerical ranges and numerical radii which began in 1992.
About
Numerical ranges and numerical radii are useful in the study of matrix and operator theory. These topics have applications in many subjects in pure and applied mathematics, such as quadratic forms, Banach spaces, dilation theory, control theory, numerical analysis, quantum information science.[1] [2] [3] [4] [5] [6] [7]
History
In the early 1970s, numerical range workshops were organized by Frank Bonsall and John Duncan. More activities were started in early 1990s, including the biennial workshop series, which began in 1992, and special issues devoted to this workshop were published.[8] [9] [10] [11]
Workshops
# | Year | Location | Organizer(s) | Participation | Workshop photo |
---|---|---|---|---|---|
1 | 1992 | C. Johnson, C.K. Li | 33 | Photo | |
2 | 1994 | N. Bebiano | 36 | Photo | |
3 | 1996 | T. Ando and K. Okubo | 36 | Photo | |
4 | 1998 | R. Brualdi, C.K. Li | 30 | Photo | |
5 | 2000 | J. Maroulas, M. Tsatsomeros | 29 | Photo | |
6 | 2002 | C.K. Li, T.Y. Tam | 30 | Photo | |
7 | 2004 | N. Bebiano, R. Lemos, G. Soares | 33 | Photo | |
8 | 2006 | C.K. Li, L. Rodman, C. Tretter | 39 | Photo | |
9 | 2008 | C.K. Li | 29 | Photo | |
10 | 2010 | C.K. Li, F.H. Szafraniec, J. Zemanek | 40 | Photo | |
11 | 2012 | C.K. Li, N.C. Wong | 48 | Photo | |
12 | 2014 | S.Y. Cheng, M.D. Choi, C.K. Li | 43 | Photo | |
13 | 2016 | M.T. Chien, C.K. Li | 29 | Photo | |
14 | 2018 | D.Farenick, D.Kribs, C.K.Li, S. Plosker, T. Schulte-Herbruggen | 32 | Photo | |
15 | 2019 | C.K. Li, H. Nakazato, H. Osaka, T. Yamazaki | 38 | Photo |
References
- Bhatia, R. (1997). Matrix Analysis. Springer-Verlag. p. 349. ISBN 978-0387948461.
- Bonsall, F.; Duncan, J. (1971). Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Cambridge University Press. p. 148. ISBN 978-0521079884.
- Bonsall, F.; Duncan, J. (1973). Numerical Ranges II, Vol. 2. Cambridge University Press. p. 179. ISBN 978-0521202275.
- Gustafson, K.E.; Rao, D.K.M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices. Springer-Verlag. p. 190. ISBN 978-0387948355.
- Istratescu, B. (1982). Introduction to Linear Operator Theory. Marcel Dekker. p. 608. ISBN 978-0824768966.
- Halmos, P.R. (1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. 19. Springer-Verlag. p. 373. doi:10.1007/978-1-4615-9976-0. ISBN 978-0387906850.
- Horn, R.A.; Johnson, C.R. (1991). Topics in Matrix Analysis. Cambridge University Press. pp. 616. ISBN 978-0521467131.
- Ando, T.; Li, C.K.; (special editors) (1994). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 37 (1–3).
- Ando, T.; Li, C.K.; (special editors) (1998). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 43 (4).
- Li, C.K.; Tam, T.Y.; (special editors) (2006). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 52 (3–4).
- Li, C.K.; Tam, T.Y.; (special editors) (2009). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 57 (5).
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.