Workshop on Numerical Ranges and Numerical Radii

Workshop on Numerical Ranges and Numerical Radii (WONRA) is a biennial workshop series on numerical ranges and numerical radii which began in 1992.

About

Numerical ranges and numerical radii are useful in the study of matrix and operator theory. These topics have applications in many subjects in pure and applied mathematics, such as quadratic forms, Banach spaces, dilation theory, control theory, numerical analysis, quantum information science.[1] [2] [3] [4] [5] [6] [7]

History

In the early 1970s, numerical range workshops were organized by Frank Bonsall and John Duncan. More activities were started in early 1990s, including the biennial workshop series, which began in 1992, and special issues devoted to this workshop were published.[8] [9] [10] [11]

Workshops

# Year Location Organizer(s) Participation Workshop photo
1 1992 Williamsburg, VA, USA C. Johnson, C.K. Li 33 Photo
2 1994 Coimbra, Portugal, N. Bebiano 36 Photo
3 1996 Sapporo, Hokkaido, Japan T. Ando and K. Okubo 36 Photo
4 1998 Madison, WI, USA R. Brualdi, C.K. Li 30 Photo
5 2000 Nafplio, Greece J. Maroulas, M. Tsatsomeros 29 Photo
6 2002 Auburn, AL, USA C.K. Li, T.Y. Tam 30 Photo
7 2004 Coimbra, Portugal N. Bebiano, R. Lemos, G. Soares 33 Photo
8 2006 Bremen, Germany C.K. Li, L. Rodman, C. Tretter 39 Photo
9 2008 Williamsburg, VA, USA C.K. Li 29 Photo
10 2010 Krakow, Poland C.K. Li, F.H. Szafraniec, J. Zemanek 40 Photo
11 2012 Kaohsiung, Taiwan C.K. Li, N.C. Wong 48 Photo
12 2014 Sanya, China S.Y. Cheng, M.D. Choi, C.K. Li 43 Photo
13 2016 Taipei, Taiwan M.T. Chien, C.K. Li 29 Photo
14 2018 Munich, Germany D.Farenick, D.Kribs, C.K.Li, S. Plosker, T. Schulte-Herbruggen 32 Photo
15 2019 Kawagoe, Japan C.K. Li, H. Nakazato, H. Osaka, T. Yamazaki 38 Photo

Symposium in conferences

Year Location Conferences Organizer(s)
1991 Minneapolis, USA Fourth SIAM Conference on Applied Linear Algebra C.K. Li
2007 Shanghai, China International Linear Algebra Society Conference C.K. Li

References

  1. Bhatia, R. (1997). Matrix Analysis. Springer-Verlag. p. 349. ISBN 978-0387948461.
  2. Bonsall, F.; Duncan, J. (1971). Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Cambridge University Press. p. 148. ISBN 978-0521079884.
  3. Bonsall, F.; Duncan, J. (1973). Numerical Ranges II, Vol. 2. Cambridge University Press. p. 179. ISBN 978-0521202275.
  4. Gustafson, K.E.; Rao, D.K.M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices. Springer-Verlag. p. 190. ISBN 978-0387948355.
  5. Istratescu, B. (1982). Introduction to Linear Operator Theory. Marcel Dekker. p. 608. ISBN 978-0824768966.
  6. Halmos, P.R. (1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. 19. Springer-Verlag. p. 373. doi:10.1007/978-1-4615-9976-0. ISBN 978-0387906850.
  7. Horn, R.A.; Johnson, C.R. (1991). Topics in Matrix Analysis. Cambridge University Press. pp. 616. ISBN 978-0521467131.
  8. Ando, T.; Li, C.K.; (special editors) (1994). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 37 (1–3).
  9. Ando, T.; Li, C.K.; (special editors) (1998). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 43 (4).
  10. Li, C.K.; Tam, T.Y.; (special editors) (2006). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 52 (3–4).
  11. Li, C.K.; Tam, T.Y.; (special editors) (2009). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 57 (5).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.