Turán's inequalities

In mathematics, Turán's inequalities are some inequalities for Legendre polynomials found by Paul Turán (1950) (and first published by Szegö (1948)). There are many generalizations to other polynomials, often called Turán's inequalities, given by (E. F. Beckenbach, W. Seidel & Otto Szász 1951) and other authors.

If Pn is the nth Legendre polynomial, Turán's inequalities state that


For Hn, the nth Hermite polynomial, Turán's inequalities are

whilst for Chebyshev polynomials they are

See also

References

  • Beckenbach, E. F.; Seidel, W.; Szász, Otto (1951), "Recurrent determinants of Legendre and of ultraspherical polynomials", Duke Math. J., 18: 1–10, doi:10.1215/S0012-7094-51-01801-7, MR 0040487
  • Szegö, G. (1948), "On an inequality of P. Turán concerning Legendre polynomials", Bull. Amer. Math. Soc., 54 (4): 401–405, doi:10.1090/S0002-9904-1948-09017-6, MR 0023954
  • Turán, Paul (1950), "On the zeros of the polynomials of Legendre", Časopis Pěst. Mat. Fys., 75: 113–122, MR 0041284
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.