Timeline of computational mathematics
This is a timeline of key developments in computational mathematics.
1940s
- Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[1][2][3]
- Dantzig introduces the simplex algorithm (voted one of the top 10 algorithms of the 20th century).[4]
- First hydro simulations at Los Alamos occurred.[5][6]
- Ulam and von Neumann introduce the notion of cellular automata.[7]
- A routine for the Manchester Baby written to factor a large number (2^18), one of the first in computational number theory.[8] The Manchester group would make several other breakthroughs in this area.[9][10]
- LU decomposition technique first discovered.
1950s
- Hestenes, Stiefel, and Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.[11][12][13][14] Voted one of the top 10 algorithms of the 20th century.
- Equations of State Calculations by Fast Computing Machines introduces the Metropolis–Hastings algorithm.[15] Also, important earlier independent work by Alder and S. Frankel.[16][17]
- Enrico Fermi, Stanislaw Ulam, John Pasta, and Mary Tsingou, discover the Fermi–Pasta–Ulam–Tsingou problem.[18]
- In network theory, Ford & Fulkerson compute a solution to the maximum flow problem.[19]
- Householder invents his eponymous matrices and transformation method (voted one of the top 10 algorithms of the 20th century).[20]
- Molecular dynamics invented by Alder and Wainwright[21]
- John G.F. Francis[22] and Vera Kublanovskaya[23] invent QR factorization (voted one of the top 10 algorithms of the 20th century).
1960s
- First recorded use of the term "finite element method" by Ray Clough,[24] to describe the methods of Courant, Hrenikoff and Zienkiewicz, among others. See also here.
- Using computational investigations of the 3-body problem, Minovitch formulates the gravity assist method.[25][26]
- Molecular dynamics was invented independently by Aneesur Rahman.[27]
- Cooley and Tukey re-invent the Fast Fourier transform (voted one of the top 10 algorithms of the 20th century), an algorithm first discovered by Gauss.
- Edward Lorenz discovers the butterfly effect on a computer, attracting interest in chaos theory.[28]
- Kruskal and Zabusky follow up the Fermi–Pasta–Ulam–Tsingou problem with further numerical experiments, and coin the term "soliton".[29][30]
- Birch and Swinnerton-Dyer conjecture formulated through investigations on a computer.[31]
- Grobner bases and Buchberger's algorithm invented for algebra[32]
- Frenchman Verlet (re)discovers a numerical integration algorithm,[33] (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[34] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics.[33]
- Risch invents algorithm for symbolic integration.[35]
1970s
- Computer algebra replicates and extends the work of Delaunay in lunar theory.[36]
- Mandelbrot, from studies of the Fatou, Julia and Mandelbrot sets, coined and popularized the term 'fractal' to describe these structures' self-similarity.[37][38]
- Kenneth Appel and Wolfgang Haken prove the four colour theorem, the first theorem to be proved by computer.[39][40][41]
1980s
- Fast multipole method invented by Rokhlin and Greengard (voted one of the top 10 algorithms of the 20th century).[42][43][44]
1990s
- The appearance of the first research grids using volunteer computing – GIMPS (1996) and distributed.net (1997).
- Kepler conjecture is almost all but certainly proved algorithmically by Thomas Hales in 1998.
2000s
See also
References
- Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
- S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
- N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
- "SIAM News, November 1994". Retrieved 6 June 2012. Systems Optimization Laboratory, Stanford University Huang Engineering Center (site host/mirror).
- Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
- A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
- Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
- The Manchester Mark 1.
- Miscellaneous Notes: Mersenne Primes. 60 Manchester - 60 years of the Modern Computer, Manchester Uni. CS Curation website.
- One tonne 'Baby' marks its birth: Dashing times. By Jonathan Fildes, Science and technology reporter, BBC News.
- Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
- Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
- Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
- Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
- Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
- Stanley P. Frankel, Unrecognized Genius, HP9825.COM (accessed 29 Aug 2015).
- Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
- Ford, L. R.; Fulkerson, D. R. (1956). "Maximal flow through a network" . Canadian Journal of Mathematics. 8: 399–404.
- Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix" (PDF). Journal of the ACM. 5 (4): 339–342. doi:10.1145/320941.320947. MR 0111128.
- Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376
-
J. G. F. Francis, "The QR Transformation, I", The Computer Journal, vol. 4, no. 3, pages 265–271 (1961, received Oct 1959) online at oxfordjournals.org;
J. G. F. Francis, "The QR Transformation, II" The Computer Journal, vol. 4, no. 4, pages 332–345 (1962) online at oxfordjournals.org. - Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
- RW Clough, “The Finite Element Method in Plane Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
- Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
- Christopher Riley and Dallas Campbell, Oct 22, 2012. "The maths that made Voyager possible". BBC News Science and Environment. Recovered 16 Jun 2013.
- Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
- Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
- Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
- http://www.merriam-webster.com/dictionary/soliton ; retrieved 3 nov 2012.
- Birch, Bryan; Swinnerton-Dyer, Peter (1965). "Notes on Elliptic Curves (II)". J. Reine Angew. Math. 165 (218): 79–108. doi:10.1515/crll.1965.218.79.
- Bruno Buchberger: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (PDF; 1,8 MB). 1965
- Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159 (1): 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
- Risch, R. H. (1969). "The problem of integration in finite terms". Transactions of the American Mathematical Society. American Mathematical Society. 139: 167–189. doi:10.2307/1995313. JSTOR 1995313. Risch, R. H. (1970). "The solution of the problem of integration in finite terms". Bulletin of the American Mathematical Society. 76 (3): 605–608. doi:10.1090/S0002-9904-1970-12454-5.
- http://www.umiacs.umd.edu/~helalfy/pub/mscthesis01.pdf
- B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN 9782082106474; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
- Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
- Kenneth Appel and Wolfgang Haken, "Every planar map is four colorable, Part I: Discharging," Illinois Journal of Mathematics 21: 429–490, 1977.
- Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491–567, 1977.
- Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108–121, 1977.
- L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
- Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
- L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
- The Rubik's Cube Conjecture PROVEN! (Do we care?) Wednesday, September 08, 2010
- God's Number is 20.
- Math research team maps E8: Calculation on paper would cover Manhattan. MIT News. Elizabeth A. Thomson, News Office; March 18, 2007.
- E8 Media Blitz, Peter Woit.
- Mathematicians Map E8. Archived 2015-09-24 at the Wayback Machine By Armine Hareyan 2007-03-20 02:21.
- What is the way of packing oranges? — Kepler’s conjecture on the packing of spheres. Posted on May 26, 2015 by Antoine Nectoux. Klein Project Blog: Connecting mathematical worlds.
- Announcement of Completion. Flyspeck Project, Google Code.
- Proof confirmed of 400-year-old fruit-stacking problem. New Scientist, 12 August 2014.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.