Theorem of transition
In algebra, the theorem of transition is said to hold between commutative rings if[1][2]
- (i) dominates ; i.e., for each proper ideal I of A, is proper and for each maximal ideal of B, is maximal
- (ii) for each maximal ideal and -primary ideal of , is finite and moreover
Given commutative rings such that dominates and for each maximal ideal of such that is finite, the natural inclusion is a faithfully flat ring homomorphism if and only if the theorem of transition holds between .[2]
References
- Nagata, Local Rings
- Matsumura, Hideyuki (1986). Commutative ring theory. Cambridge Studies in Advanced Mathematics. 8. Cambridge University Press. ISBN 0-521-36764-6. MR 0879273. Zbl 0603.13001.CS1 maint: ref=harv (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.