Table of explosive detonation velocities

This is a compilation of published detonation velocities for various high explosive compounds. Detonation velocity is the speed with which the detonation shock wave travels through the explosive. It is a key, directly measurable indicator of explosive performance, but depends on density which must always be specified, and may be too low if the test charge diameter is not large enough. Especially for little studied explosives there may be divergent published values due to charge diameter issues. In liquid explosives, like nitroglycerin, there may be two detonation velocities, one much higher than the other. The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity.[1]

The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the detonation pressure. The pressure can be calculated using Chapman-Jouguet theory from the velocity and density.

Table of Explosive Detonation Velocities
Explosive class Explosive name Abbreviation Detonation
velocity (m/s)
Test Density
(g/cm³)
Aromatic1,3,5-trinitrobenzeneTNB7,4501.60
Aromatic1,3,5-Triazido-2,4,6-trinitrobenzeneTATNB7,3001.71
Aromatic4,4’-Dinitro-3,3’-diazenofuroxanDDF10,0002.02
AromaticTrinitrotolueneTNT6,9001.60
AromaticDiazodinitrophenolDDNP7,1001.63
AromaticTrinitroanilineTNA7,3001.72
AromaticTetryl7,5701.71
AromaticPicric acidTNP7,3501.70
AromaticAmmonium picrate (Dunnite)7,1501.60
AromaticMethyl picrate6,8001.57
AromaticEthyl picrate6,5001.55
AromaticPicryl chloride7,2001.74
AromaticTrinitrocresol6,8501.62
AromaticLead styphnate5,2002.90
AromaticTriaminotrinitrobenzeneTATB7,3501.80
Aliphatic1,1-diamino-2,2-dinitroetheneDADNE, FOX-78,3351.76
InorganicAmmonium perchlorateAP[2]6,3001.95
AliphaticMethyl nitrateMN[3]6,8181.22
AliphaticNitroglycol/ethylene glycol dinitrateEGDN7,5001.49
AliphaticNitroglycerineNG7,7001.59
AliphaticMannitol hexanitrateMHN8,2601.73
AliphaticPentaerythritol tetranitratePETN8,4001.76
AliphaticErythritol tetranitrateETN8,2001.72
AliphaticEthylenedinitramineEDNA7,5701.65
AliphaticNitroguanidineNQ8,2001.70
AliphaticCyclotrimethylenetrinitramineRDX8,6501.76
AliphaticCyclotetramethylene tetranitramineHMX[4]9,4001.91
AliphaticHexanitrodiphenylamineHND7,1001.64
AliphaticHexanitrohexaazaisowurtzitaneHNIW or CL-20[4]9,5002.04
AliphaticTetranitroglycolurilTNGU, Sorguyl, Sorguryl9,1501.95
AliphaticHexanitrohexaazatricyclododecanedioneHHTDD, DTNGU, Naza/Namsorguyl/uryl HnHaza/amTcDglcDuryl9,7002.16
Aliphatic5-Nitro-2,4-dihydro-3H-1,2,4-triazole-3-one [5]NTO8,5641.93
AliphaticOctanitrocubaneONC10,1002.00
AliphaticNitrocelluloseNC7,3001.20
AliphaticUrea nitrateUN4,7001.20
AliphaticTriacetone triperoxideAP or TATP5,3001.18
AliphaticMethyl ethyl ketone peroxideMEKP5,2001.17
AliphaticHexamethylene triperoxide diamineHMTD4,5000.88
InorganicMercury fulminate4,2503.00
InorganicPotassium perchlorate aluminium mixtureKClO4[6]4,6001.5
InorganicLead azide4,6303.00
InorganicNickel hydrazine nitrateNHN7,0001.70
InorganicSilver azide4,0004.00
InorganicANFOAN/FO4,2001.30
InorganicAmmonium NitrateAN2,7001.73
Explosive class Explosive name Abbreviation Detonation
velocity (m/s)
Density
(g/cm³)

See also

References

  1. Cooper, Paul W. (1996). Explosives Engineering, New York: Wiley-VCH. ISBN 0-471-18636-8
  2. Shevchenko, A. A.; Dolgoborodov, A Yu; Brazhnikov, M. A.; Kirilenko, V. G. (2018). "Pseudoideal detonation of mechanoactivated mixtures of ammonium perchlorate with nanoaluminum". Journal of Physics: Conference Series. 946: 012055. doi:10.1088/1742-6596/946/1/012055.
  3. Kozak, G.D. (1998). "Measurement and calculation of the ideal detonation velocity for liquid nitrocompounds". Combust Explos Shock Waves. 34 (5): 584. doi:10.1007/BF02672682.
  4. Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. (2012). "High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX". Crystal Growth & Design. 12 (9): 4311. doi:10.1021/cg3010882.
  5. Viswanath DS, Ghosh TK, Boddu VM. (2018) 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). Chapter 5 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. Springer. doi:10.1007/978-94-024-1201-7_5
  6. "Data" (PDF). www.dtic.mil. Retrieved 2019-12-15.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.