Strong duality

Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual optimal objective are equal. This is as opposed to weak duality (the primal problem has optimal value larger than or equal to the dual problem, in other words the duality gap is greater than or equal to zero).

Characterizations

Strong duality holds if and only if the duality gap is equal to 0.

Sufficient conditions

Sufficient conditions comprise:

See also

References

  1. Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1.
  2. Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 3, 2011.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.