Seiffert's spiral

Seiffert's spherical spiral is a curve on a sphere made by moving on the sphere with constant speed and angular velocity with respect to a fixed diameter. If the selected diameter is the line from the north pole to the south pole, then the requirement of constant angular velocity means that the longitude of the moving point changes at a constant rate.[1] The cylindrical coordinates of the varying point on this curve are given by the Jacobian elliptic functions.

See also

References

  1. Bowman, F (1961). Introduction to Elliptic Functions with Applications. New York: Dover.
  • Seiffert, A. (1896), Ueber eine neue geometrische Einführung in die Theorie der elliptischen Functionen, 127, Wissensch. Beiträge Jahresber. Städtischen Realschule zu Charlottenburg, Ostern, JFM 27.0337.02
  • Erdös, Paul (2000), "Spiraling the Earth with C. G. J. Jacobi", American Journal of Physics, 88 (10): 888–895, doi:10.1119/1.1285882
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.