Second-order cone programming

A second-order cone program (SOCP) is a convex optimization problem of the form

minimize
subject to

where the problem parameters are , and . is the optimization variable. is the Euclidean norm and indicates transpose.[1] The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function to lie in the second-order cone in .[1]

SOCPs can be solved by interior point methods[2] and in general, can be solved more efficiently than semidefinite programming (SDP) problems.[3] Some engineering applications of SOCP include filter design, antenna array weight design, truss design, and grasping force optimization in robotics.[4]

Relation with other optimization problems

When for , the SOCP reduces to a linear program. When for , the SOCP is equivalent to a convex quadratically constrained linear program.

Convex quadratically constrained quadratic programs can also be formulated as SOCPs by reformulating the objective function as a constraint.[4] Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program.[4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation.[3] In fact, while any closed convex semialgebraic set in the plane can be written as a feasible region of a SOCP,[5] it is known that there exist convex semialgebraic sets that are not representable by SDPs, that is, there exist convex semialgebraic sets that can not be written as a feasible region of a SDP.[6]

Examples

Quadratic constraint

Consider a quadratic constraint of the form

This is equivalent to the SOC constraint

Stochastic linear programming

Consider a stochastic linear program in inequality form

minimize
subject to

where the parameters are independent Gaussian random vectors with mean and covariance and . This problem can be expressed as the SOCP

minimize
subject to

where is the inverse normal cumulative distribution function.[1]

Stochastic second-order cone programming

We refer to second-order cone programs as deterministic second-order cone programs since data defining them are deterministic. Stochastic second-order cone programs are a class of optimization problems that are defined to handle uncertainty in data defining deterministic second-order cone programs.

Solvers and scripting (programming) languages

Name License Brief info
AMPLcommercialAn algebraic modeling language with SOCP support
Artelys Knitrocommercial
CPLEXcommercial
FICO Xpresscommercial
Gurobicommercialparallel SOCP barrier algorithm
MOSEKcommercialparallel interior-point algorithm
NAG Numerical LibrarycommercialGeneral purpose numerical library with SOCP solver

References

  1. Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization (PDF). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved July 15, 2019.
  2. Potra, lorian A.; Wright, Stephen J. (1 December 2000). "Interior-point methods". Journal of Computational and Applied Mathematics. 124 (1–2): 281–302. Bibcode:2000JCoAM.124..281P. doi:10.1016/S0377-0427(00)00433-7.
  3. Fawzi, Hamza (2019). "On representing the positive semidefinite cone using the second-order cone". Mathematical Programming. 175 (1–2): 109–118. arXiv:1610.04901. doi:10.1007/s10107-018-1233-0. ISSN 0025-5610.
  4. Lobo, Miguel Sousa; Vandenberghe, Lieven; Boyd, Stephen; Lebret, Hervé (1998). "Applications of second-order cone programming". Linear Algebra and Its Applications. 284 (1–3): 193–228. doi:10.1016/S0024-3795(98)10032-0.
  5. Scheiderer, Claus (2020-04-08). "Second-order cone representation for convex subsets of the plane". arXiv:2004.04196 [math.OC].
  6. Scheiderer, Claus (2018). "Spectrahedral Shadows". SIAM Journal on Applied Algebra and Geometry. 2 (1): 26–44. doi:10.1137/17M1118981. ISSN 2470-6566.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.