Quark–lepton complementarity

The quark–lepton complementarity (QLC) is a possible fundamental symmetry between quarks and leptons. First proposed in 1990 by Foot and Lew,[1] it assumes that leptons as well as quarks come in three "colors". Such theory may reproduce the Standard Model at low energies, and hence quark–lepton symmetry may be realized in nature.

Possible evidence for QLC

Recent neutrino experiments confirm that the Pontecorvo–Maki–Nakagawa–Sakata matrix UPMNS contains large mixing angles. For example, atmospheric measurements of particle decay yield
θPMNS
23
  45°, while solar experiments yield
θPMNS
12
  34°. These results should be compared with
θPMNS
13
which is small,[2] and with the quark mixing angles in the Cabibbo–Kobayashi–Maskawa matrix UCKM. The disparity that nature indicates between quark and lepton mixing angles has been viewed in terms of a "quark–lepton complementarity" which can be expressed in the relations

Possible consequences of QLC have been investigated in the literature and in particular a simple correspondence between the PMNS and CKM matrices have been proposed and analyzed in terms of a correlation matrix. The correlation matrix VM is simply defined as the product of the CKM and PMNS matrices:

Unitarity implies:

Open questions

One may ask where do the large lepton mixings come from? Is this information implicit in the form of the matrix? This question has been widely investigated in the literature, but its answer is still open. Furthermore, in some Grand Unification Theories (GUTs) the direct QLC correlation between the CKM and the PMNS mixing matrix can be obtained. In this class of models, the matrix is determined by the heavy Majorana neutrino mass matrix.

Despite the naive relations between the PMNS and CKM angles, a detailed analysis shows that the correlation matrix is phenomenologically compatible with a tribimaximal pattern, and only marginally with a bimaximal pattern. It is possible to include bimaximal forms of the correlation matrix in models with renormalization effects that are relevant, however, only in particular cases with and with quasi-degenerate neutrino masses.

See also

References

  1. R. Foot, H. Lew (1990). "Quark-lepton-symmetric model". Physical Review D. 41 (11): 3502–3505. Bibcode:1990PhRvD..41.3502F. doi:10.1103/PhysRevD.41.3502. PMID 10012286.
  2. An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R. L.; Cai, B.; Cao, G. F.; Cao, J.; Carr, R.; Chan, W. T.; Chang, J. F.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y.; Chen, Y. X.; Cherwinka, J. J.; Chu, M. C.; et al. (2012). "Observation of Electron-Antineutrino Disappearance at Daya Bay". Physical Review Letters. 108 (17): 171803. arXiv:1203.1669. Bibcode:2012PhRvL.108q1803A. doi:10.1103/PhysRevLett.108.171803. PMID 22680853. S2CID 16580300.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.