Quantum feedback
Quantum feedback or quantum feedback control is a class of methods to prepare and manipulate a quantum system in which that system's quantum state or trajectory is used to evolve the system towards some desired outcome. Just as in the classical case, feedback occurs when outputs from the system are used as inputs that control the dynamics (e.g. by controlling the Hamiltonian of the system). The feedback signal is typically filtered or processed in a classical way, which is often described as measurement based feedback. However, quantum feedback also allows the possibility of maintaining the quantum coherence of the output as the signal is processed (via unitary evolution), which has no classical analogue.[1][2][3]
Measurement based feedback
In the closed loop quantum control, the feedback may be entirely dynamical (that is, the plant and controller form a single dynamical system and the controller with the two influencing each other through direct interaction). This is named Coherent Control. Alternatively, the feedback may be entirely information theoretic insofar as the controller gains information about the plant due to measurement of the plant. This is measurement-based control.
Notes
- Lloyd, Seth (14 July 2000). "Coherent quantum feedback". Physical Review A. 62 (2): 022108. Bibcode:2000PhRvA..62b2108L. doi:10.1103/PhysRevA.62.022108.
- Nelson, Richard J.; Weinstein, Yaakov; Cory, David; Lloyd, Seth (2 October 2000). "Experimental Demonstration of Fully Coherent Quantum Feedback". Physical Review Letters. 85 (14): 3045–3048. Bibcode:2000PhRvL..85.3045N. doi:10.1103/PhysRevLett.85.3045. PMID 11005999.
- E. Gough, John (2013). "Quantum control and information processing" (PDF). Quantum Information Processing. 12 (Quantum control and information processing): 1397–1415. doi:10.1007/s11128-012-0491-7.
References
- H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
- Wiseman, H.; Milburn, G. J. (1993). "Quantum theory of optical feedback via homodyne detection" (PDF). Phys. Rev. Lett. 70 (5): 548–551. Bibcode:1993PhRvL..70..548W. doi:10.1103/PhysRevLett.70.548. PMID 10054142.
- Wiseman, H. (1994). "Quantum theory of continuous feedback" (PDF). Phys. Rev. A. 49 (3): 2133–2150. Bibcode:1994PhRvA..49.2133W. doi:10.1103/PhysRevA.49.2133. PMID 9910465.
- Wiseman, H. M.; Milburn, G. J. (1993). "Quantum theory of field-quadrature measurements" (PDF). Phys. Rev. A. 47 (1): 642. Bibcode:1993PhRvA..47..642W. doi:10.1103/PhysRevA.47.642. PMID 9908961.
- Wiseman, H. M.; Milburn, G. J. (1993). "Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere" (PDF). Phys. Rev. A. 47 (3): 1652–1666. Bibcode:1993PhRvA..47.1652W. doi:10.1103/PhysRevA.47.1652. PMID 9909117.
- Wiseman, H.; Milburn, G. (1994). "Squeezing via feedback" (PDF). Phys. Rev. A. 49 (2): 1350–1366. Bibcode:1994PhRvA..49.1350W. doi:10.1103/PhysRevA.49.1350. PMID 9910369.
- Wiseman, H. M. (1996). "Quantum trajectories and quantum measurement theory". Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B. 8 (1): 205–222. arXiv:quant-ph/0302080. Bibcode:1996QuSOp...8..205W. doi:10.1088/1355-5111/8/1/015.
- Lloyd, S. (2000). "Coherent quantum feedback". Phys. Rev. A. 62 (2): 022108. Bibcode:2000PhRvA..62b2108L. doi:10.1103/PhysRevA.62.022108.
- Nelson, R. J.; Weinstein, Y.; Cory, D.; Lloyd, S. (2000). "Experimental demonstration of fully coherent quantum feedback". Phys. Rev. Lett. 85 (14): 3045–3048. Bibcode:2000PhRvL..85.3045N. doi:10.1103/PhysRevLett.85.3045. PMID 11005999.