Parseval–Gutzmer formula

In mathematics, the ParsevalGutzmer formula states that, if is an analytic function on a closed disk of radius r with Taylor series

then for z = re on the boundary of the disk,

which may also be written as

Proof

The Cauchy Integral Formula for coefficients states that for the above conditions:

where γ is defined to be the circular path around origin of radius r. Also for we have: Applying both of these facts to the problem starting with the second fact:

Further Applications

Using this formula, it is possible to show that

where

This is done by using the integral

References

  • Ahlfors, Lars (1979). Complex Analysis. McGrawHill. ISBN 0-07-085008-9.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.