Organic electrochemical transistor
The organic electrochemical transistor (OECT) is a transistor in which the drain current is controlled by the injection of ions from a liquid electrolyte into a conductor or semiconductor thin-film channel.[1] The injection of ions in the channel is controlled through the application of a voltage to the gate electrode. The migrated ions into the films modulate the conductivity of the channel is called electrochemical doping. Hence the conductivity of the channel as well as the charge transport mechanism of the OECTs changes. Some OECTs exhibit multi-bits memory mechanism and it mimicked the synaptic functionalities of our brain. For that reason OECTs can be used as neuromorphic computing applications. OECTs are being explored for applications in biosensors, bioelectronics and large-area, low-cost electronics.
Basic information
OECTs consist of a semiconductor or even conductor thin-film (the channel), usually made of a conjugated polymer, which is in direct contact with an electrolyte.[2] Source and drain electrodes establish electrical contact to the channel, while a gate electrode establishes electrical contact to the electrolyte. The electrolyte can be liquid, gel, or solid. In the most common biasing configuration, the source is grounded and a voltage (drain voltage) is applied to the drain. This causes a current to flow (drain current), due to electronic charge (usually holes) present in the channel. When a voltage is applied to the gate, ions from the electrolyte are injected in the channel and change the electronic charge density, and hence the drain current. When the gate voltage is removed, the injected ions return to the electrolyte and the drain current goes back to its original value. However, some channel materials can holds the migrated ions even after removing the gate voltage. This phenomenon can be treated as memory device.
OECTs are different from electrolyte-gated field-effect transistors. In the latter type of device, ions do not penetrate into the channel, but rather accumulate near its surface (or near the surface of a dielectric layer, when such a layer is deposited on the channel).[3] This induces accumulation of electronic charge inside the channel, near the surface. In contrast, in OECTs, ions are injected into the channel and change the electronic charge density throughout its entire volume. As a result of this bulk coupling between ionic and electronic charge, OECTs show a very high transconductance.[4] The disadvantage of OECTs is that they are slow, as ionic charge has to get in and out of the channel. Microfabricated OECTs show response times of the order of hundreds of microseconds.[5]
The most common OECTs are based on (PEDOT:PSS), and work in the depletion mode.[6] In this material, the organic semiconductor PEDOT is doped p-type by the sulfonate anions of the PSS (the dopant)[7] and hence exhibits a high (hole) conductivity. Hence, in the absence of a gate voltage, the drain current will be high and the transistor will be in the ON state. When a positive voltage is applied to the gate, cations from the electrolyte are injected into the PEDOT:PSS channel, where they compensate the sulfonate anions. This leads to dedoping (electrochemical doping) of the PEDOT, and the transistor reaches its OFF state.[1] Accumulation mode OECTs, based on intrinsic organic semiconductors (for example p(g2T-TT)), have also been described.[8][9] Accurate simulation of OECTs is possible using the drift-diffusion model.[10]
OECTs were first developed in the 80’s by the group of Mark Wrighton.[11] They are currently the focus of intense development for applications in bioelectronics,[12] and in large-area, low-cost electronics.[13] Advantages such as straightforward fabrication and miniaturization, compatibility with low-cost printing techniques,[14][15] compatibility with a wide range of mechanical supports (including fibers,[16] paper,[17] plastic[18] and elastomer[19]), and stability in aqueous environments, led to their use in a variety of applications in biosensors.[20][21] Moreover, their high transconductance makes OECTs powerful amplifying transducers.[22] OECTs have been used to detect ions,[23][24] metabolites,[25][26] DNA,[27] pathogenic organisms,[28] probe cell adhesion,[29] measure the integrity of barrier tissue,[30] detect epileptic activity in rats,[31] and interface with electrically active cells and tissues.[32][33][34]
External links
References
- Bernards, D. A.; Malliaras, G. G. (2007-10-16). "Steady-State and Transient Behavior of Organic Electrochemical Transistors". Advanced Functional Materials. Wiley. 17 (17): 3538–3544. doi:10.1002/adfm.200601239. ISSN 1616-301X.
- Zeglio, Erica; Inganäs, Olle (2018). "Active Materials for Organic Electrochemical Transistors". Advanced Materials. 30 (44): 1800941. doi:10.1002/adma.201800941. ISSN 1521-4095.
- Kim, Se Hyun; Hong, Kihyon; Xie, Wei; Lee, Keun Hyung; Zhang, Sipei; Lodge, Timothy P.; Frisbie, C. Daniel (2012-12-02). "Electrolyte-Gated Transistors for Organic and Printed Electronics". Advanced Materials. Wiley. 25 (13): 1822–1846. doi:10.1002/adma.201202790. ISSN 0935-9648.
- Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; et al. (2013-07-12). "High transconductance organic electrochemical transistors". Nature Communications. Springer Science and Business Media LLC. 4 (1): 2133. doi:10.1038/ncomms3133. ISSN 2041-1723.
- Khodagholy, Dion; Gurfinkel, Moshe; Stavrinidou, Eleni; Leleux, Pierre; Herve, Thierry; Sanaur, Sébastien; Malliaras, George G. (2011-10-17). "High speed and high density organic electrochemical transistor arrays". Applied Physics Letters. AIP Publishing. 99 (16): 163304. doi:10.1063/1.3652912. ISSN 0003-6951.
- Owens, Róisín M.; Malliaras, George G. (2010). "Organic Electronics at the Interface with Biology". MRS Bulletin. Cambridge University Press (CUP). 35 (6): 449–456. doi:10.1557/mrs2010.583. ISSN 0883-7694.
- A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker and K. Reuter, in PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, 2010), pp. 113-166.
- Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu; Kim, BongSoo; He, Yiyong; Renn, Michael J.; Lodge, Timothy P.; Daniel Frisbie, C. (2008-10-19). "Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic". Nature Materials. Springer Nature. 7 (11): 900–906. doi:10.1038/nmat2291. ISSN 1476-1122.
- Inal, Sahika; Rivnay, Jonathan; Leleux, Pierre; Ferro, Marc; Ramuz, Marc; Brendel, Johannes C.; Schmidt, Martina M.; Thelakkat, Mukundan; Malliaras, George G. (2014-10-13). "A High Transconductance Accumulation Mode Electrochemical Transistor". Advanced Materials. Wiley. 26 (44): 7450–7455. doi:10.1002/adma.201403150. ISSN 0935-9648.
- Szymanski, Marek; Tu, Deyu; Forchheimer, Robert (2017). "2-D Drift-Diffusion Simulation of Organic Electrochemical Transistors". IEEE Transactions on Electron Devices. 64: 5114–5120. doi:10.1109/TED.2017.2757766.
- White, Henry S.; Kittlesen, Gregg P.; Wrighton, Mark S. (1984). "Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor". Journal of the American Chemical Society. American Chemical Society (ACS). 106 (18): 5375–5377. doi:10.1021/ja00330a070. ISSN 0002-7863.
- Strakosas, Xenofon; Bongo, Manuelle; Owens, Róisín M. (2015-01-07). "The organic electrochemical transistor for biological applications". Journal of Applied Polymer Science. Wiley. 132 (15): 41735. doi:10.1002/app.41735. ISSN 0021-8995.
- Nilsson, D.; Robinson, N.; Berggren, M.; Forchheimer, R. (2005-02-10). "Electrochemical Logic Circuits". Advanced Materials. Wiley. 17 (3): 353–358. doi:10.1002/adma.200401273. ISSN 0935-9648.
- D. Nilsson, M. X. Chen, T. Kugler, T. Remonen, M. Armgarth and M. Berggren, Adv. Mater. 14, 51 (2002).
- Basiricò, L.; Cosseddu, P.; Scidà, A.; Fraboni, B.; Malliaras, G.G.; Bonfiglio, A. (2012). "Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors". Organic Electronics. Elsevier BV. 13 (2): 244–248. doi:10.1016/j.orgel.2011.11.010. ISSN 1566-1199.
- Hamedi, Mahiar; Forchheimer, Robert; Inganäs, Olle (2007-04-04). "Towards woven logic from organic electronic fibres". Nature Materials. Springer Nature. 6 (5): 357–362. doi:10.1038/nmat1884. ISSN 1476-1122.
- Nilsson, D (2002-09-20). "An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper". Sensors and Actuators B: Chemical. Elsevier BV. 86 (2–3): 193–197. doi:10.1016/s0925-4005(02)00170-3. ISSN 0925-4005.
- Zhang, Shiming; Hubis, Elizabeth; Girard, Camille; Kumar, Prajwal; DeFranco, John; Cicoira, Fabio (2016). "Water stability and orthogonal patterning of flexible micro-electrochemical transistors on plastic". Journal of Materials Chemistry C. Royal Society of Chemistry (RSC). 4 (7): 1382–1385. doi:10.1039/c5tc03664j. ISSN 2050-7526.
- Zhang, Shiming; Hubis, Elizabeth; Tomasello, Gaia; Soliveri, Guido; Kumar, Prajwal; Cicoira, Fabio (2017-03-08). "Patterning of Stretchable Organic Electrochemical Transistors". Chemistry of Materials. American Chemical Society (ACS). 29 (7): 3126–3132. doi:10.1021/acs.chemmater.7b00181. ISSN 0897-4756.
- Zhang, Shiming; Cicoira, Fabio (2018). "Flexible self-powered biosensors". Nature. Springer Science and Business Media LLC. 561 (7724): 466–467. doi:10.1038/d41586-018-06788-1. ISSN 0028-0836.
- Lin, Peng; Yan, Feng (2011-11-21). "Organic Thin-Film Transistors for Chemical and Biological Sensing". Advanced Materials. Wiley. 24 (1): 34–51. doi:10.1002/adma.201103334. ISSN 0935-9648.
- Rivnay, Jonathan; Leleux, Pierre; Sessolo, Michele; Khodagholy, Dion; Hervé, Thierry; Fiocchi, Michel; Malliaras, George G. (2013-10-02). "Organic Electrochemical Transistors with Maximum Transconductance at Zero Gate Bias". Advanced Materials. Wiley. 25 (48): 7010–7014. doi:10.1002/adma.201303080. ISSN 0935-9648.
- Svensson, Per-Olof; Nilsson, David; Forchheimer, Robert; Berggren, Magnus (2008-11-17). "A sensor circuit using reference-based conductance switching in organic electrochemical transistors". Applied Physics Letters. AIP Publishing. 93 (20): 203301. doi:10.1063/1.2975377. ISSN 0003-6951.
- Sessolo, Michele; Rivnay, Jonathan; Bandiello, Enrico; Malliaras, George G.; Bolink, Henk J. (2014-05-23). "Ion-Selective Organic Electrochemical Transistors". Advanced Materials. Wiley. 26 (28): 4803–4807. doi:10.1002/adma.201400731. ISSN 0935-9648.
- Zhu, Zheng-Tao; Mabeck, Jeffrey T.; Zhu, Changcheng; Cady, Nathaniel C.; Batt, Carl A.; Malliaras, George G. (2004). "A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH". Chemical Communications. Royal Society of Chemistry (RSC) (13): 1556. doi:10.1039/b403327m. ISSN 1359-7345.
- Tang, Hao; Yan, Feng; Lin, Peng; Xu, Jianbin; Chan, Helen L. W. (2011-04-26). "Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials". Advanced Functional Materials. Wiley. 21 (12): 2264–2272. doi:10.1002/adfm.201002117. hdl:10397/33050. ISSN 1616-301X.
- Lin, Peng; Luo, Xiaoteng; Hsing, I-Ming; Yan, Feng (2011-07-27). "Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label-Free DNA Sensing". Advanced Materials. Wiley. 23 (35): 4035–4040. doi:10.1002/adma.201102017. hdl:10397/11943. ISSN 0935-9648.
- He, Rong-Xiang; Zhang, Meng; Tan, Fei; Leung, Polly H. M.; Zhao, Xing-Zhong; Chan, Helen L. W.; Yang, Mo; Yan, Feng (2012). "Detection of bacteria with organic electrochemical transistors". Journal of Materials Chemistry. Royal Society of Chemistry (RSC). 22 (41): 22072. doi:10.1039/c2jm33667g. hdl:10397/12945. ISSN 0959-9428.
- Lin, Peng; Yan, Feng; Yu, Jinjiang; Chan, Helen L. W.; Yang, Mo (2010-08-20). "The Application of Organic Electrochemical Transistors in Cell-Based Biosensors". Advanced Materials. Wiley. 22 (33): 3655–3660. doi:10.1002/adma.201000971. hdl:10397/15450. ISSN 0935-9648.
- Jimison, Leslie H; Tria, Scherrine A.; Khodagholy, Dion; Gurfinkel, Moshe; Lanzarini, Erica; Hama, Adel; Malliaras, George G.; Owens, Róisín M. (2012-09-05). "Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor". Advanced Materials. Wiley. 24 (44): 5919–5923. doi:10.1002/adma.201202612. ISSN 0935-9648.
- Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G. (2013-07-12). "High transconductance organic electrochemical transistors". Nature Communications. Springer Science and Business Media LLC. 4 (1): 1575. doi:10.1038/ncomms3133. ISSN 2041-1723.
- Campana, Alessandra; Cramer, Tobias; Simon, Daniel T.; Berggren, Magnus; Biscarini, Fabio (2014). "Organic Electrochemical Transistors: Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold". Advanced Materials. Wiley. 26 (23): 3873–3873. doi:10.1002/adma.201470165. ISSN 0935-9648.
- Leleux, Pierre; Rivnay, Jonathan; Lonjaret, Thomas; Badier, Jean-Michel; Bénar, Christian; Hervé, Thierry; Chauvel, Patrick; Malliaras, George G. (2014-09-29). "Organic Electrochemical Transistors for Clinical Applications". Advanced Healthcare Materials. Wiley. 4 (1): 142–147. doi:10.1002/adhm.201400356. ISSN 2192-2640.
- Yao, Chunlei; Li, Qianqian; Guo, Jing; Yan, Feng; Hsing, I-Ming (2014-10-31). "Rigid and Flexible Organic Electrochemical Transistor Arrays for Monitoring Action Potentials from Electrogenic Cells". Advanced Healthcare Materials. Wiley. 4 (4): 528–533. doi:10.1002/adhm.201400406. ISSN 2192-2640.