Mold health issues

Mold health issues are potentially harmful effects of molds (US usage; British English "moulds") and their mycotoxins. However, recent research has shown these adverse health effects stem not just from molds, but also other microbial agents and biotoxins associated with dampness, mold, and water-damaged buildings, such as gram-negative bacteria that produce endotoxins, and actinomycetes and their associated exotoxins.[1]

Light micrograph of the hyphae and spores of the human pathogen Aspergillus fumigatus

Molds and many related microbial agents are ubiquitous in the biosphere, and mold spores are a common component of household and workplace dust. While the vast majority of molds are not hazardous to humans, a few are known to be, and reaction to molds can vary between individuals, from relatively minor allergic reactions through to severe multi-system inflammatory effects, and even neurological problems and death.[2][3] The United States Centers for Disease Control and Prevention (CDC) reported in its June 2006 report, 'Mold Prevention Strategies and Possible Health Effects in the Aftermath of Hurricanes and Major Floods,' that "excessive exposure to mold-contaminated materials can cause adverse health effects in susceptible persons regardless of the type of mold or the extent of contamination."[4] Mold spores and associated toxins can cause harm primarily via inhalation, ingestion, and contact. In abnormally high quantities, they can present especially hazardous health risks to humans after prolonged exposure, with three generally accepted mechanisms of harm and a fourth probable mechanism:

  1. Allergic reactions
  2. Fungal infection (mycosis)[5]
  3. Toxicity (poisoning by mycotoxins)[6]
  4. Innate immune activation.[7]

Health effects

Studies have shown that people who are atopic (sensitive), already suffer from allergies, asthma, or compromised immune systems[8] and occupy damp or moldy buildings are at an increased risk of health problems such as inflammatory responses to mold spores, metabolites such as mycotoxins, and other components.[9] Other problems are respiratory and/or immune system responses including respiratory symptoms, respiratory infections, exacerbation of asthma, and rarely hypersensitivity pneumonitis, allergic alveolitis, chronic rhinosinusitis and allergic fungal sinusitis. A person's reaction to mold depends on their sensitivity and other health conditions, the amount of mold present, length of exposure, and the type of mold or mold products.

Some molds also produce mycotoxins, which can pose serious health risks to humans and animals. The colloquial term "toxic mold" (or more accurately, toxigenic mold) refers to molds that produce mycotoxins known to harm humans, such as Stachybotrys chartarum, not to all molds.[10] Exposure to high levels of mycotoxins can lead to neurological problems and, in some cases, death. Prolonged exposure, e.g., daily workplace exposure, can be particularly harmful.

The five most common genera of indoor molds are Cladosporium, Penicillium, Aspergillus, Alternaria, and Trichoderma.

Damp environments that allow mold to grow can also allow the proliferation of bacteria and release volatile organic compounds.

Symptoms of mold exposure

Symptoms of mold exposure can include:[11]

  • Nasal and sinus congestion, runny nose
  • Respiratory problems, such as wheezing and difficulty breathing, chest tightness
  • Cough
  • Throat irritation
  • Sneezing / Sneezing fits

Health effects linking to asthma

Adverse respiratory health effects are associated with occupancy in buildings with moisture and mold damage.[12] Infants may develop respiratory symptoms due to exposure to a specific type of fungal mold, called Penicillium. Signs that an infant may have mold-related respiratory problems include (but are not limited to) a persistent cough and wheeze. Increased exposure increases the probability of developing respiratory symptoms during their first year of life. Studies have shown that a correlation exists between the probability of developing asthma and increased exposure to Penicillium. The levels are deemed ‘no mold’ to ‘low level’, from ‘low’ to ‘intermediate’, and ‘intermediate’ to ‘high’.[13]

Mold exposures have a variety of health effects depending on the person. Some people are more sensitive to mold than others. Exposure to mold can cause several health issues such as; throat irritation, nasal stuffiness, eye irritation, cough, and wheezing, as well as skin irritation in some cases. Exposure to mold may also cause heightened sensitivity depending on the time and nature of exposure. People at higher risk for mold allergies are people with chronic lung illnesses and weak immune systems, which can often result in more severe reactions when exposed to mold.

There has been sufficient evidence that damp indoor environments are correlated with upper respiratory tract symptoms such as coughing, and wheezing in people with asthma.[14]

Flood-specific mold health effects

Among children and adolescents, the most common health effect post-flooding was lower respiratory tract symptoms, though there was a lack of association with measurements of total fungi.[15] Another study found that these respiratory symptoms were positively associated with exposure to water damaged homes, exposure included being inside without participating in clean up.[15] Despite lower respiratory effects among all children, there was a significant difference in health outcomes between children with pre-existing conditions and children without.[15] Children with pre-existing conditions were at greater risk that can likely be attributed to the greater disruption of care in the face of flooding and natural disaster.[15][16]

Although mold is the primary focus post flooding for residents, the effects of dampness alone must also be considered. According to the Institute of Medicine, there is a significant association between dampness in the home and wheeze, cough, and upper respiratory symptoms.[17] A later analysis determined that 30% to 50% of asthma-related health outcomes are associated with not only mold, but also dampness in buildings.[17] Another health effect associated with dampness and mold is Sick Building Syndrome (SBS), which is defined by manifestations of symptomatic illness as a result of poor indoor air quality and pollutant exposures.[17] Signs of potentially illness-causing buildings include condensation on the windows, high humidity in the bathrooms, a moldy odor, or water leakage.[18]

While there is a proven correlation between mold exposure and the development of upper and lower respiratory syndromes, there are still fewer incidences of negative health effects than one might expect.[19] Barbeau and colleagues suggested that studies do not show a greater impact from mold exposure for several reasons: 1) the types of health effects are not severe and are therefore not caught; 2) people whose homes have flooded find alternative housing to prevent exposure; 3) self-selection, the healthier people participated in mold clean-up and were less likely to get sick; 4) exposures were time-limited as result of remediation efforts and; 5) the lack of access to health care post-flooding may result in fewer illnesses being discovered and reported for their association with mold.[19] There are also certain notable scientific limitations in studying the exposure effects of dampness and molds on individuals because there are currently no known biomarkers that can prove that a person was exclusively exposed to molds.[20] Thus, it is currently impossible to prove correlation between mold exposure and symptoms.[20]

Mold-associated conditions

Health problems associated with high levels of airborne mold spores include[21] allergic reactions, asthma episodes, irritations of the eye, nose and throat, sinus congestion, and other respiratory problems. Several studies and reviews have suggested that childhood exposure to dampness and mold might contribute to the development of asthma.[22][23][24][25] For example, residents of homes with mold are at an elevated risk for both respiratory infections and bronchitis.[26] When mold spores are inhaled by an immunocompromised individual, some mold spores may begin to grow on living tissue,[27] attaching to cells along the respiratory tract and causing further problems.[28][29] Generally, when this occurs, the illness is an epiphenomenon and not the primary pathology. Also, mold may produce mycotoxins, either before or after exposure to humans, potentially causing toxicity.

Fungal infection

A serious health threat from mold exposure for immunocompromised individuals is systemic fungal infection (systemic mycosis). Immunocompromised individuals exposed to high levels of mold, or individuals with chronic exposure may become infected.[30][31] Sinuses and digestive tract infections are most common; lung and skin infections are also possible. Mycotoxins may or may not be produced by the invading mold.

Dermatophytes are the parasitic fungi that cause skin infections such as athlete's foot and tinea cruris. Most dermatophyte fungi take the form of mold, as opposed to a yeast, with an appearance (when cultured) that is similar to other molds.

Opportunistic infection by molds[32] such as Talaromyces marneffei and Aspergillus fumigatus is a common cause of illness and death among immunocompromised people, including people with AIDS or asthma.[33][34]

Mold-induced hypersensitivity

The most common form of hypersensitivity is caused by the direct exposure to inhaled mold spores that can be dead or alive or hyphal fragments which can lead to allergic asthma or allergic rhinitis.[35] The most common effects are rhinorrhea (runny nose), watery eyes, coughing and asthma attacks. Another form of hypersensitivity is hypersensitivity pneumonitis. Exposure can occur at home, at work or in other settings.[35][36] It is predicted that about 5% of people have some airway symptoms due to allergic reactions to molds in their lifetimes.[37]

Hypersensitivity may also be a reaction toward an established fungal infection in allergic bronchopulmonary aspergillosis.

Mycotoxin toxicity

Molds excrete toxic compounds called mycotoxins, secondary metabolites produced by fungi under certain environmental conditions. These environmental conditions affect the production of mycotoxins at the transcription level. Temperature, water activity and pH, strongly influence mycotoxin biosynthesis by increasing the level of transcription within the fungal spore. It has also been found that low levels of fungicides can boost mycotoxin synthesis.[38][39] Certain mycotoxins can be harmful or lethal to humans and animals when exposure is high enough.[40][41]

The common house mold, Trichoderma longibrachiatum, produces small toxic peptides containing amino acids not found in common proteins, like alpha-aminoisobutyric acid, called trilongins (up to 10% w/w). Their toxicity is due to absorption into cells and production of nano-channels that obstruct vital ion channels that ferry potassium and sodium ions across the cell membrane. This affects in the cells action potential profile, as seen in cardiomyocytes, pneumocytes and neurons leading to conduction defects. Trilongins are highly resistant to heat and antimicrobials making primary prevention the only management option.[42][43][44]

Extreme exposure to very high levels of mycotoxins can lead to neurological problems and, in some cases, death; fortunately, such exposures rarely to never occur in normal exposure scenarios, even in residences with serious mold problems.[45] Prolonged exposure, such as daily workplace exposure, can be particularly harmful.[46]

It is thought that all molds may produce mycotoxins, and thus all molds may be potentially toxic if large enough quantities are ingested, or the human becomes exposed to extreme quantities of mold. Mycotoxins are not produced all the time, but only under specific growing conditions. Mycotoxins are harmful or lethal to humans and animals only when exposure is high enough.[47][48]

Mycotoxins can be found on the mold spore and mold fragments, and therefore they can also be found on the substrate upon which the mold grows. Routes of entry for these insults can include ingestion, dermal exposure, and inhalation.

Aflatoxin is an example of a mycotoxin. It is a cancer-causing poison produced by certain fungi in or on foods and feeds, especially in field corn and peanuts.[49]

Toxic effects from mold were thought to be the result of exposure to the mycotoxins of some mold species, such as Stachybotrys chartarum. In 1927, Ismailson, a Soviet scientist, noted a form of mycotoxicosis in employees in a binder twine factory.[50] In the 1940s, "Stachybotryotoxicosis" was identified in Ukraine as a new disease in humans in close contact with moldy hay, including inhalation of the associated dust, which caused, among other symptoms, a "haemorrhagic exúdate".[51] Following cases of pulmonary hemorrhage in infants in Cleveland, Ohio in 1993–94, several related studies suggested a causal relationship between exposure to S. chartarum and the disease.[52][53][54][55][56][57] An anonymous panel from within the CDC revisited the cases and argued that the link was not proven.[58][59][60] Subsequent studies with mice and rats exposed to S. chartarum and associated mycotoxins showed that pulmonary hemorrhage could occur, suggesting the link is plausible.[61][62][63] The American Academy of Pediatrics also found the link plausible,[64] and subsequent analysis and case studies with humans have further noted the association.[65][66][67] As well, a 1987 report by the United States Army Medical Research Institute of Infectious Diseases suggested that the effects of "trichothecene mycotoxins are more than 10 times greater via inhalation than via intravenous exposure."[68][69] The presumed mechanism of action is that Stachybotrys produces a compound, stachylysin, which is a hemolysin that disintegrates (lyses) red blood cells.[70][71][72]

Innate immune activation

The health hazards produced by mold have been associated with sick building syndrome (SBS), but previously, controversy existed around whether studies had sufficiently demonstrated that indoor exposures to these common organisms posed a significant threat.[4] In 1986, a study noted an airborne outbreak of toxicosis from trichothecenes associated with Stachybotrys atra in a Chicago house affecting a family including their maid; symptoms included diarrhea, headaches, fatigue, dermatitis, malaise, and severe leg pains, which resolved following remediation of the mold contamination.[73] This study drew attention to how mycotoxins in indoor environments might impact health. In the early 2000s, several small studies concluded that individuals with significant dampness and mold exposure displayed cognitive and neurological deficits on par with mild-to-moderate traumatic brain injury along with immunological changes.[74][75][76][77] These studies were criticised for their methodologies, such as by not showing a possible mechanism of action for the harm, and not controlling for the possibility of malingering by mold-exposed individuals involved in litigation, although the associated critiques were also problematic.[78][79][80] Researchers also contested whether the amount of spores that could be breathed in by humans would be sufficient to cause a toxic effect and that no association between spore counts and adverse health effects existed.[81][82][83] However, when also considering spore fragments (that have more surface area to carry mycotoxins) as well as whole spores, the amount of exposure was estimated to be 1,000x to 1,000,000x higher than previously thought.[84][85] Moreover, inhalational exposure "provides a pathway to the central nervous system along the olfactory and trigeminal nerve axons in the nasal sensory epithelium that bypasses the blood–brain barrier."[86]

Despite these early studies, a 2003 position paper by the American College of Occupational and Environmental Medicine (ACOEM) claimed the link between mold and building-related symptoms was "weak and unproven".[87] Further to this, the Center for Legal Policy at The Manhattan Institute paid $40,000 to Globaltox (later, Veritox),[88][89][90] a company associated with two of the same authors of the ACOEM paper, to produce a "lay translation" of their study that would be "more assessable ... to judges".[91][92][93][94] This lay paper claimed that the notion that human health could be adversely affected by inhaled molds or their toxins was "junk science" and was referenced in legal cases in the United States to deny related legal claims.[95][96] The United States Chamber of Commerce, the largest lobbying group in the U.S., also promoted this paper (and is still doing so as of 2020).[97]

A 2006 position paper by the American Academy of Allergy, Asthma, and Immunology (AAAAI) maintained a similarly sceptical position as the ACOEM paper in denying that mold in indoor environments could cause severe effects.[98] In 2008, the United States Government Accountability Office published a report on indoor mold, reviewing the literature to date and acknowledging the possibility of immune and toxic effects, while calling for further research.[99] By 2009, the WHO noted a strong association between dampness and inflammatory responses, while also recognising that "synergistic interactions among microbial agents" might make it "difficult to detect and implicate specific exposures in the causation of damp building-associated adverse health effects."[1] Gram-negative bacteria, which create endotoxins known to produce inflammatory responses,[100] might also be partly responsible, as might actinomycetes and their associated exotoxins.[101][102] While it may be difficult to determine the relative contributions of the molds, bacteria, and dust particles to which people are exposed, studies clearly show that such combinations activate stronger, synergistic immune responses than predicted by adding the effects of the individual stimuli.[103][104]

Later in 2009, a carefully controlled, seminal study published by Kilburn demonstrated that mold exposure was associated with extensive adverse effects on multiple physiological systems. He compared the responses of 105 mold-exposed individuals to those of 202 unexposed controls, as well as those of 100 people exposed to a wide variety of chemicals. Rather than asking people how they felt, Kilburn measured physiological and mental function. He found highly significant abnormalities in the responses of mold-exposed individuals compared to controls on 12 of the 14 physiological functions quantified and 10 of the 13 psychological tests administered. These abnormalities included extreme problems with balance correlated with cerebellar abnormalities, decreased grip strength, impaired color vision, impaired visual fields, slowed reaction times, slowed performance on perceptual motor tasks, impaired memory, and decreased performance on problem-solving tasks as well as a variety of respiratory problems. Chemical-exposed individuals had similar abnormalities.[105]

Like many researchers, Kilburn attributed the adverse effects of mold exposure primarily to the toxins some molds produce. Currently available data suggest mold’s effects are more the result of chronic activation of the immune system, leading to chronic inflammation.[106][107] Such immune activation does not necessarily require toxin exposure; rather, exposure to non-toxic mold stimuli or fungal skeletal elements is sufficient to activate immune responses and trigger inflammation.[108][109][110][111] Nineteen innate-immune pattern-recognition receptors have been identified that recognize common components of fungal cell walls or fungal RNA/DNA, activating inflammatory responses.[112] Studies exposing mice to controlled doses of S. chartarum spores show activation of the innate immune system, along with neural, cognitive, and emotional dysfunction, even when mycotoxins were removed and mice were exposed only to spore skeletal elements.[113][114]

In 2012, a ten-year longitudinal study found that dampness and mold seemed to be an underlying cause of sick-building syndrome.[115] A 2018 review of 16 associated studies, including Kilburn's, concluded that people exposed to molds and mycotoxins had "symptoms affecting multiple organs, including the lungs, musculoskeletal system, as well as the central and peripheral nervous systems"[7] and also noted that such exposure has now been implicated in the pathogenesis of autism-spectrum disorder.[116][117][118][119][120] An in vitro study of human neurological system cells showed damage caused by inflammatory and immune processes (along with disruption of the blood-brain barrier) in response to mycotoxins at exposure levels that would be expected in water-damaged buildings.[121] Ex vivo studies of human peripheral blood mononuclear cells showed inflammatory and innate immune responses upon exposure to specific molds and mycotoxins, such as S. chartarum (and an associated mycotoxin, Satratoxin G) and various strains of Aspergillus.[122][123] Furthermore, children living in water-damaged homes show systemic inflammation, immune activation, and probably poorer cognitive function, too.[124][125][126][127] Tellingly, many of the affected biomarkers, hormones, and pathways in individuals affected by inhaled mycotoxins are consistent with studies of ingested mycotoxins, such as trichothecene exposure.[128][129] Two studies using volumetric MRIs have suggested that affected individuals display structural changes in the brain, associated with the forebrain parenchymal, cortical gray matter, pallidum volumes, and the caudate nucleus.[130][131] Correlating to this, Dale Bredesen, a neurodegenerative researcher, has noted a subtype of Alzheimer's Disease associated with this chronic inflammatory response, calling it an "unrecognized – and treatable – epidemic".[132][133] Arnold R. Eiser, professor emeritus of medicine at Drexel University College of Medicine, has suggested that environmental factors such as dampness and mold may be a contributing factor for why Finland has the highest death rate from dementia in the world.[134]

The WHO estimates the prevalence of significant dampness and mold in buildings to be at least 20%, while other estimates of US homes suggest a prevalence as high as 47%.[135][136] Sleeping disorders are also associated with exposure to dampness and mold, consistent with the decrease in α-melanocyte stimulating hormone (α-MSH) associated with this syndrome.[137] Patients may also present with psychological symptoms given the neuroinflammatory markers and growth factors involved.[138][139][140][141]

Exposure sources and prevention

The primary sources of mold exposure are from the indoor air in buildings with substantial mold growth and the ingestion of food with mold growths.

Air

While mold and related microbial agents can be found both inside and outside, specific factors can lead to significantly higher levels of these microbes, creating a potential health hazard. Several notable factors are water damage in buildings, the use of building materials which provide a suitable substrate and source of food to amplify mold growth, relative humidity, and energy-efficient building designs, which can prevent proper circulation of outside air and create a unique ecology in the built environment.[142][143][144][145] A common issue with mold hazards in the household can be the placement of furniture, resulting in a lack of ventilation of the nearby wall. The simplest method of avoiding mold in a home so affected is to move the furniture in question.

Prevention of mold exposure and its ensuing health issues begins with the prevention of mold growth in the first place by avoiding a mold-supporting environment. Extensive flooding and water damage can support extensive mold growth. Following hurricanes, homes with greater flood damage, especially those with more than 3 feet (0.91 m) of indoor flooding, demonstrated far higher levels of mold growth compared with homes with little or no flooding.[146][147]

It is useful to perform an assessment of the location and extent of the mold hazard in a structure. Various practices of remediation can be followed to mitigate mold issues in buildings, the most important of which is to reduce moisture levels.[148] Removal of affected materials after the source of moisture has been reduced and/or eliminated may be necessary, as some materials cannot be remediated.[149] Thus, the concept of mold growth, assessment, and remediation is essential in preventing health issues arising due to the presence of dampness and mold.

Molds may excrete liquids or low-volatility gases, but the concentrations are so low that frequently they cannot be detected even with sensitive analytical sampling techniques. Sometimes, these by-products are detectable by odor, in which case they are referred to as "ergonomic odors", meaning the odors are noticeable but do not indicate toxicologically significant exposures.

Food

Moldy nectarines that were in a refrigerator. The nectarine with black mold is also affecting the nectarine underneath.

Molds that are often found on meat and poultry include members of the genera Alternaria, Aspergillus, Botrytis, Cladosporium, Fusarium, Geotrichum, Mortierella, Mucor, Neurospora, Paecilomyces, Penicillium, and Rhizopus.[150] Grain crops in particular incur considerable losses both in field and storage due to pathogens, post-harvest spoilage, and insect damage. A number of common microfungi are important agents of post-harvest spoilage, notably members of the genera Aspergillus, Fusarium, and Penicillium.[150] A number of these produce mycotoxins (soluble, non-volatile toxins produced by a range of microfungi that demonstrate specific and potent toxic properties on human and animal cells[151]) that can render foods unfit for consumption. When ingested, inhaled, or absorbed through skin, mycotoxins may cause or contribute to a range of effects from reduced appetite and general malaise to acute illness or death in rare cases.[152][153][154] Mycotoxins may also contribute to cancer. Dietary exposure to the mycotoxin aflatoxin B1, commonly produced by growth of the fungus Aspergillus flavus on improperly stored ground nuts in many areas of the developing world, is known to independently (and synergistically with Hepatitis B virus) induce liver cancer.[155] Mycotoxin-contaminated grain and other food products have a significant impact on human and animal health globally. According to the World Health Organization, roughly 25% of the world's food may be contaminated by mycotoxins.[152]

Prevention of mold exposure from food is generally to consume food that has no mold growths on it.[49] Also, mold growth in the first place can be prevented by the same concept of mold growth, assessment, and remediation that prevents air exposure. Also, it is especially useful to clean the inside of the refrigerator and to ensure dishcloths, towels, sponges, and mops are clean.[49]

Ruminants are considered to have increased resistance to some mycotoxins, presumably due to the superior mycotoxin-degrading capabilities of their gut microbiota.[152] The passage of mycotoxins through the food chain may also have important consequences on human health.[156] For example, in China in December 2011, high levels of carcinogen aflatoxin M1 in Mengniu brand milk were found to be associated with the consumption of mold-contaminated feed by dairy cattle.[157]

Bedding

Bacteria, fungi, allergens, and particle-bound semi-volatile organic compounds (SVOCs) can all be found in bedding and pillows with possible consequences for human health given the high amount of exposure each day.[158] Over 47 species of fungi have been identified in pillows, although the typical range of species found in a single pillow varied between four and sixteen.[159] Compared to feather pillows, synthetic pillows typically display a slightly greater variety of fungal species and significantly higher levels of β‐(1,3)‐glucan, which can cause inflammatory responses.[160][161] The authors concluded that these and related results suggest feather bedding might be a more appropriate choice for asthmatics than synthetics. Some newer bedding products incorporate silver nanoparticles due to their antibacterial,[162][163][164] antifungal,[165] and antiviral[166] properties; however, the long-term safety of this additional exposure to these nanoparticles is relatively unknown, and a conservative approach to the use of these products is recommended.[167]

Flooding

Flooding in houses causes a unique opportunity for mold growth, which may be attributed to adverse health effects in people exposed to the mold, especially children and adolescents. In a study on the health effects of mold exposure after hurricanes Katrina and Rita, the predominant types of mold were Aspergillus, Penicillium, and Cladosporium with indoor spore counts ranging from 6,142 – 735,123 spores m−3.[19] Molds isolated following flooding were different from mold previously reported for non-water damaged homes in the area.[19] Further research found that homes with greater than three feet of indoor flooding demonstrated significantly higher levels of mold than those with little or no flooding.[19]

Mitigation

Recommended strategies to prevent mold include avoiding mold-contamination; utilization of environmental controls; the use of personal protective equipment (PPE), including skin and eye protection and respiratory protection; and environmental controls such as ventilation and suppression of dust.[168] When mold cannot be prevented, the CDC recommends clean-up protocol including first taking emergency action to stop water intrusion.[168] Second, they recommend determining the extent of water damage and mold contamination. And third, they recommend planning remediation activities such as establishing containment and protection for workers and occupants; eliminating water or moisture sources if possible; decontaminating or removing damaged materials and drying any wet materials; evaluating whether space has been successfully remediated; and reassembling the space to control sources of moisture.[168]

History

In 1698, the physician Sir John Floyer published the first edition of A Treatise of the Asthma, the first English testbook on the malady. In it, he describes how dampness and mold could trigger an asthmatic attack, specifically, "damp houses and fenny [boggy] countries". He also writes of an asthmatic "who fell into a violent fit by going into a Wine-Cellar", presumably due to the "fumes" in the air.[169][170]

In the 1930s, mold was identified as the cause behind the mysterious deaths of farm animals in Russia and other countries. Stachybotrys chartarum was found growing on the wet grain used for animal feed. Illness and death also occurred in humans when starving peasants ate large quantities of rotten food grains and cereals heavily overgrown with the Stachybotrys mold.[171]

In the 1970s, building construction techniques changed in response to changing economic realities, including the energy crisis. As a result, homes, and buildings became more airtight. Also, cheaper materials such as drywall came into common use. The newer building materials reduced the drying potential of the structures, making moisture problems more prevalent. This combination of increased moisture and suitable substrates contributed to increased mold growth inside buildings.[172]

In April 2015, a tree fell on the home of Lucy Wicks, a Federal Liberal MP of Australia, causing water damage. Afterwards, she fell ill with neurological symptoms, environmental sensitivity, and fatigue, and was eventually diagnosed with chronic inflammatory response syndrome (CIRS) (see Innate immune activation).[173][174] This led to a federal inquiry into biotoxin-related illnesses in 2018.[175][176] It is currently unclear if the Department of Health have made any changes to the Australian healthcare system in response to the Inquiry and subsequent report.[177][178] But the Australian Government formally responded to the recommendations made by the inquiry in March 2020,[179] and the National Construction Code was updated in 2019 to implement higher standards regarding condensation management in building design.[180][181][182]

As of 2020, the US Centers for Disease Control and Prevention (CDC) are yet to acknowledge or warn the public of the multi-system, chronic inflammatory, and innate immune system effects that can occur from exposure to dampness, mold, and water-damaged buildings.[183]

Today, the US Food and Drug Administration and the agriculture industry closely monitor mold and mycotoxin levels in grains and foodstuffs to keep the contamination of animal feed and human food supplies below specific levels. In 2005, Diamond Pet Foods, a US pet food manufacturer, experienced a significant rise in the number of corn shipments containing elevated levels of aflatoxin. This mold toxin eventually made it into the pet food supply, and dozens of dogs and cats died before the company was forced to recall affected products.[184][185]

Litigation

In 1999, an Austin, Texas, woman was awarded $32 million when she sued her insurer over mold damage in her 22-room mansion.[186]

In 2001, a jury awarded a couple and their eight-year-old son $2.7 million, plus attorney's fees and costs, in a toxic mold-related personal injury lawsuit against the owners and managers of their apartment in Sacramento, California.[187]

In 2002, the U.S. International Trade Commission reported that, according to one estimate, US insurers paid over $3 billion in mold-related lawsuits, more than double the previous year's total.[188]

In 2003, there were over 10,000 mold-related lawsuits pending in US state courts according to the Insurance Information Institute.[189] Most were filed in states with high humidity, but suits were on the rise in other states as well.[189] Notably that year, The Tonight Show co-host Ed McMahon received $7.2 million from insurers and others to settle his lawsuit alleging that toxic mold in his Beverly Hills home made him and his wife ill and killed their dog.[190] Also that year, environmental activist Erin Brockovich received settlements of $430,000 from two parties and an undisclosed amount from a third party to settle her lawsuit alleging toxic mold in her Agoura Hills, California, home.[191]

By 2004, many mold litigation settlements were for amounts well past $100,000.[186]

In 2005, the U.S. International Trade Commission reported that toxic mold showed signs of being the "new asbestos" in terms of claims paid.[188]

In 2006, a Manhattan Beach, California, family received a $22.6 million settlement in a toxic mold case.[192] The family had asserted that moldy lumber had caused severe medical problems in their child.[192] That same year, Hilton Hotels received $25 million in settlement of its lawsuit over mold growth in the Hilton Hawaiian Village's Kalia Tower.[193]

In 2010, a jury awarded $1.2 million in damages in a lawsuit against a landlord for neglecting to repair a mold-infested house in Laguna Beach, California.[194] The lawsuit asserted that a child in the home suffered from severe respiratory problems for several years as a result of the mold.[194]

In 2011, in North Pocono, Pennsylvania, a jury awarded two homeowners $4.3 million in a toxic mold verdict.[195]

In 2012, a key appellate court in Manhattan found a consensus in the scientific literature for a causal relationship between the presence of mold and resultant illness.[196]

Policy

While there is a national policy in the United States regarding mold, each state is responsible for independently creating and administering its policy. For example, following Hurricane Harvey, the governor of Texas sought to expand the emergency response to allow mold-remediation companies to come from out of state.[197]

Under Section 17920.3 of the California Health & Safety Code, visible mold growth and dampness of habitable rooms can be sufficient for a home to be declared as a "substandard building", offering legal recourse for those affected, such as tenants in moldy apartments.[198][199][200] Notably, California recognizes by law not only that dampness and mold exacerbate asthma but can cause its development.[201][202]

See also

References

  1. "WHO guidelines for indoor air quality: dampness and mould". www.euro.who.int. 2009. p. 91. Retrieved 2020-08-03.
  2. Kathy Orton (October 25, 2013) Mold: What every homeowner fears but probably shouldn’t, The Washington Post, accessed 16 April 2019
  3. Empting LD (2009). "Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure". Toxicology and Industrial Health. 25 (9–10): 577–81. doi:10.1177/0748233709348393. PMID 19854819. S2CID 27769836.
  4. Weinhold B (June 2007). "A spreading concern: inhalational health effects of mold". Environmental Health Perspectives. 115 (6): A300–05. doi:10.1289/ehp.115-a300. PMC 1892134. PMID 17589582.
  5. Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA (February 2006). "The medical effects of mold exposure". The Journal of Allergy and Clinical Immunology. 117 (2): 326–33. doi:10.1016/j.jaci.2005.12.001. PMID 16514772.
  6. Indoor Environmental Quality: Dampness and Mold in Buildings. National Institute for Occupational Safety and Health. August 1, 2008.
  7. Ratnaseelan AM, Tsilioni I, Theoharides TC (June 2018). "Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes". Clinical Therapeutics. 40 (6): 903–917. doi:10.1016/j.clinthera.2018.05.004. PMID 29880330.
  8. Stöppler MC (July 16, 2014). "Mold Exposure". medicinenet.com. Retrieved February 1, 2015.
  9. Heseltine E, Rosen J, eds. (2009). WHO guidelines for indoor air quality: dampness and mould (PDF). World Health Organization. p. 93. ISBN 978-92-890-4168-3. Retrieved February 1, 2015.
  10. Indoor Environmental Quality Dampness and Mold in Buildings. National Institute for Occupational Safety and Health. August 1, 2008.
  11. Minnesota Department of Health. "Mold and Moisture in Homes". Minnesota North Star. Retrieved November 22, 2011.
  12. Krieger J, Jacobs DE, Ashley PJ, Baeder A, Chew GL, Dearborn D, et al. (2010). "Housing interventions and control of asthma-related indoor biologic agents: a review of the evidence". Journal of Public Health Management and Practice. 16 (5 Suppl): S11–20. doi:10.1097/PHH.0b013e3181ddcbd9. PMC 3934496. PMID 20689369.
  13. Gent JF, Ren P, Belanger K, Triche E, Bracken MB, Holford TR, Leaderer BP (December 2002). "Levels of household mold associated with respiratory symptoms in the first year of life in a cohort at risk for asthma". Environmental Health Perspectives. 110 (12): A781–86. doi:10.1289/ehp.021100781. PMC 1241132. PMID 12460818.
  14. Cohen A. "WHO Guidelines for Indoor Air Quality: Dampness and Mould" (PDF). World Health Organization. Retrieved November 18, 2011.
  15. Rabito FA, Iqbal S, Kiernan MP, Holt E, Chew GL (March 2008). "Children's respiratory health and mold levels in New Orleans after Katrina: a preliminary look". The Journal of Allergy and Clinical Immunology. 121 (3): 622–25. doi:10.1016/j.jaci.2007.11.022. PMID 18179814.
  16. Rath B, Donato J, Duggan A, Perrin K, Bronfin DR, Ratard R, et al. (May 2007). "Adverse health outcomes after Hurricane Katrina among children and adolescents with chronic conditions". Journal of Health Care for the Poor and Underserved. 18 (2): 405–17. doi:10.1353/hpu.2007.0043. PMID 17483568. S2CID 31302249.
  17. Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J (June 2011). "Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence". Environmental Health Perspectives. 119 (6): 748–56. doi:10.1289/ehp.1002410. PMC 3114807. PMID 21269928.
  18. Anyanwu EC, Campbell AW, Vojdani A (April 2003). "Neurophysiological effects of chronic indoor environmental toxic mold exposure on children". TheScientificWorldJournal. 3: 281–90. doi:10.1100/tsw.2003.22. PMC 5974888. PMID 12806113.
  19. Barbeau DN, Grimsley LF, White LE, El-Dahr JM, Lichtveld M (2010-03-01). "Mold exposure and health effects following hurricanes Katrina and Rita". Annual Review of Public Health. 31 (1): 165–78 1 p following 178. doi:10.1146/annurev.publhealth.012809.103643. PMID 20070193.
  20. Davis P (2001). Molds, Toxic Molds, and Indoor Air Quality. California State Library. ISBN 978-1-58703-133-5.
  21. "Mold: A Health Hazard (Release #1605-096)". FEMA. November 8, 2005. Retrieved September 25, 2007.
  22. Iossifova YY, Reponen T, Ryan PH, Levin L, Bernstein DI, Lockey JE, et al. (February 2009). "Mold exposure during infancy as a predictor of potential asthma development". Annals of Allergy, Asthma & Immunology. 102 (2): 131–7. doi:10.1016/S1081-1206(10)60243-8. PMID 19230464.
  23. Thacher JD, Gruzieva O, Pershagen G, Melén E, Lorentzen JC, Kull I, Bergström A (June 2017). "Mold and dampness exposure and allergic outcomes from birth to adolescence: data from the BAMSE cohort". Allergy. 72 (6): 967–974. doi:10.1111/all.13102. PMC 5434946. PMID 27925656.
  24. Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J (June 2011). "Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence". Environmental Health Perspectives. 119 (6): 748–56. doi:10.1289/ehp.1002410. PMC 3114807. PMID 21269928.
  25. Krieger J, Jacobs DE, Ashley PJ, Baeder A, Chew GL, Dearborn D, et al. (2010). "Housing interventions and control of asthma-related indoor biologic agents: a review of the evidence". Journal of Public Health Management and Practice. 16 (5 Suppl): S11-20. doi:10.1097/PHH.0b013e3181ddcbd9. PMC 3934496. PMID 20689369.
  26. Fisk WJ, Eliseeva EA, Mendell MJ (November 2010). "Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis". Environmental Health. 9: 72. doi:10.1186/1476-069X-9-72. PMC 3000394. PMID 21078183.
  27. Müller FM, Seidler M (August 2010). "Characteristics of pathogenic fungi and antifungal therapy in cystic fibrosis". Expert Review of Anti-Infective Therapy. 8 (8): 957–64. doi:10.1586/eri.10.72. PMID 20695750. S2CID 21925548.
  28. Simicic S, Matos T, “Microbiological diagnosis of invasive aspergillosis.” Zdravnisji vestnik-slovanian medical journal. 2010, Vol. 79, Issue 10, pp. 716–25.
  29. Erol S (April 2010). "[Nosocomial aspergillosis: epidemiology and control]". Mikrobiyoloji Bulteni (in Turkish). 44 (2): 323–38. PMID 20549969.
  30. Nucci M, Anaissie E (October 2007). "Fusarium infections in immunocompromised patients". Clinical Microbiology Reviews. 20 (4): 695–704. doi:10.1128/CMR.00014-07. PMC 2176050. PMID 17934079.
  31. Gaviria JM, van Burik JA, Dale DC, Root RK, Liles WC (April 1999). "Comparison of interferon-gamma, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor for priming leukocyte-mediated hyphal damage of opportunistic fungal pathogens". The Journal of Infectious Diseases. 179 (4): 1038–41. doi:10.1086/314679. PMID 10068606.
  32. McCormick A, Loeffler J, Ebel F (November 2010). "Aspergillus fumigatus: contours of an opportunistic human pathogen". Cellular Microbiology. 12 (11): 1535–43. doi:10.1111/j.1462-5822.2010.01517.x. PMID 20716206. S2CID 7798878.
  33. Ben-Ami R, Lewis RE, Kontoyiannis DP (August 2010). "Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection". British Journal of Haematology. 150 (4): 406–17. doi:10.1111/j.1365-2141.2010.08283.x. PMID 20618330. S2CID 28216163.
  34. Shang ST, Lin JC, Ho SJ, Yang YS, Chang FY, Wang NC (June 2010). "The emerging life-threatening opportunistic fungal pathogen Kodamaea ohmeri: optimal treatment and literature review". Journal of Microbiology, Immunology, and Infection = Wei Mian Yu Gan Ran Za Zhi. 43 (3): 200–06. doi:10.1016/S1684-1182(10)60032-1. PMID 21291847.
  35. Indian Health Service: Bemidji Area Office of Environmental Health and Engineering Environmental Health Services Section “Guideline on the Assessment and Remediation of Fungi in Indoor Environments”
  36. "What Is Hypersensitivity Pneumonitis?". National Heart, Lung, and Blood Institute. October 1, 2010. Retrieved January 15, 2014.
  37. Hardin BD, Kelman BJ, Saxon A (May 2003). "Adverse human health effects associated with molds in the indoor environment" (PDF). Journal of Occupational and Environmental Medicine. 45 (5): 470–78. CiteSeerX 10.1.1.161.3936. doi:10.1097/00043764-200305000-00006. PMID 12762072. S2CID 6027519.
  38. Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (July 2010). "Natural functions of mycotoxins and control of their biosynthesis in fungi". Applied Microbiology and Biotechnology. 87 (3): 899–911. doi:10.1007/s00253-010-2657-5. PMID 20495914. S2CID 176363.
  39. Bohnert M, Wackler B, Hoffmeister D (June 2010). "Spotlights on advances in mycotoxin research". Applied Microbiology and Biotechnology. 87 (1): 1–7. doi:10.1007/s00253-010-2565-8. PMID 20376632. S2CID 10017676.
  40. Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. pp. 633–38. ISBN 978-0-8385-8529-0.
  41. Etzel RA, Montaña E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG, et al. (August 1998). "Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi". Archives of Pediatrics & Adolescent Medicine. 152 (8): 757–62. doi:10.1001/archpedi.152.8.757. PMID 9701134.
  42. Reason Discovered for the Toxicity of Indoor Mould – ScienceDaily (Oct. 12, 2012) : https://www.sciencedaily.com/releases/2012/10/121012074655.htm
  43. Mikkola R, Andersson MA, Kredics L, Grigoriev PA, Sundell N, Salkinoja-Salonen MS (November 2012). "20-Residue and 11-residue peptaibols from the fungus Trichoderma longibrachiatum are synergistic in forming Na+/K+ -permeable channels and adverse action towards mammalian cells". The FEBS Journal. 279 (22): 4172–90. doi:10.1111/febs.12010. PMID 22994321. S2CID 12055186.
  44. “Trilongins” Offer Insight into Mold Toxicity Environmental health perspectives 2/2013.
  45. Bennett JW, Klich M (July 2003). "Mycotoxins". Clinical Microbiology Reviews. 16 (3): 497–516. doi:10.1128/CMR.16.3.497-516.2003. PMC 164220. PMID 12857779.
  46. "Mold – General Information – Basic Facts". www.cdc.gov. 2019-10-28. Retrieved 2019-11-19.
  47. "Agriculture". Province of Manitoba. Retrieved 2019-11-19.
  48. "Mycotoxins". www.who.int. Retrieved 2019-11-19.
  49. United States Food Safety and Inspection Service > Molds On Food: Are They Dangerous? Last Modified: August 22, 2013
  50. Forgacs J (1972-01-01). Kadis S, Ciegler A, Ajl SJ (eds.). Chapter 4. – Stachybotryotoxicosis. Fungal Toxins. Academic Press. pp. 95–128. ISBN 978-0-12-046508-8. Retrieved 2020-08-30.
  51. Drobotko VG (1945). "Stachybotryotoxicosis. A New Disease of Horses and Humans". American Review of Soviet Medicine. 2 (3): 238–42. Archived from the original on 2020-08-31 via CAB Direct.
  52. "Acute Pulmonary Hemorrhage/Hemosiderosis Among Infants –Cleveland, January 1993–November 1994". JAMA: The Journal of the American Medical Association. 273 (4): 281. 1995-01-25. doi:10.1001/jama.1995.03520280025018. ISSN 0098-7484.
  53. "Update: Pulmonary Hemorrhage/Hemosiderosis Among Infants – Cleveland, Ohio, 1993–1996". JAMA. 283 (15): 1951. 1997. doi:10.1001/jama.283.15.1951.
  54. Montaña E, Etzel RA, Allan T, Horgan TE, Dearborn DG (January 1997). "Environmental risk factors associated with pediatric idiopathic pulmonary hemorrhage and hemosiderosis in a Cleveland community". Pediatrics. 99 (1): E5. doi:10.1542/peds.99.1.e5. PMID 9096173.
  55. Etzel RA, Montaña E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG, et al. (August 1998). "Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi". Archives of Pediatrics & Adolescent Medicine. 152 (8): 757–62. doi:10.1001/archpedi.152.8.757. PMID 9701134.
  56. Jarvis BB, Sorenson WG, Hintikka EL, Nikulin M, Zhou Y, Jiang J, et al. (October 1998). "Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants". Applied and Environmental Microbiology. 64 (10): 3620–5. doi:10.1128/aem.64.10.3620-3625.1998. PMC 106476. PMID 9758776.
  57. Dearborn DG, Yike I, Sorenson WG, Miller MJ, Etzel RA (1999). Overview of investigations into pulmonary hemorrhage among infants in Cleveland, Ohio. OCLC 678270287.
  58. "Update: Pulmonary Hemorrhage/Hemosiderosis Among Infants – Cleveland, Ohio, 1993–1996". www.cdc.gov. Retrieved 2020-08-03.
  59. Rehmeyer J (2017). Through the shadowlands : a science writer's odyssey into an illness science doesn't understand. Rodale. pp. 229–31. ISBN 978-1-62336-766-4. OCLC 988027549.
  60. Marino, Jacqueline (1999-03-25). "Death of Innocents". Cleveland Scene. Archived from the original on 2016-10-27. Retrieved 2020-08-13.
  61. Yike I, Rand TG, Dearborn DG (April 2005). "Acute inflammatory responses to Stachybotrys chartarum in the lungs of infant rats: time course and possible mechanisms". Toxicological Sciences. 84 (2): 408–17. doi:10.1093/toxsci/kfi080. PMID 15647601.
  62. Pestka JJ, Yike I, Dearborn DG, Ward MD, Harkema JR (July 2008). "Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma". Toxicological Sciences. 104 (1): 4–26. doi:10.1093/toxsci/kfm284. PMID 18007011.
  63. Lichtenstein JH, Molina RM, Donaghey TC, Amuzie CJ, Pestka JJ, Coull BA, Brain JD (July 2010). "Pulmonary responses to Stachybotrys chartarum and its toxins: mouse strain affects clearance and macrophage cytotoxicity". Toxicological Sciences. 116 (1): 113–21. doi:10.1093/toxsci/kfq104. PMC 2886860. PMID 20385656.
  64. Kim JJ, Mazur LJ (December 2006). "Spectrum of noninfectious health effects from molds". Pediatrics. 118 (6): 2582–6. doi:10.1542/peds.2006-2828. PMID 17142549. S2CID 46438609.
  65. Dearborn DG, Smith PG, Dahms BB, Allan TM, Sorenson WG, Montana E, Etzel RA (September 2002). "Clinical profile of 30 infants with acute pulmonary hemorrhage in Cleveland". Pediatrics. 110 (3): 627–37. doi:10.1542/peds.110.3.627. PMID 12205270.
  66. Etzel RA (September 2006). "What the primary care pediatrician should know about syndromes associated with exposures to mycotoxins". Current Problems in Pediatric and Adolescent Health Care. 36 (8): 282–305. doi:10.1016/j.cppeds.2006.05.003. PMID 16935759.
  67. Thrasher JD, Hooper DH, Taber J (2014-12-25). "Family of Six, Their Health and the Death of a 16 Month Old Male from Pulmonary Hemorrhage: Identification of Mycotoxins and Mold in the Home and Lungs, Liver and Brain of Deceased Infant". Global Journal of Medical Research. ISSN 2249-4618.
  68. Etzel RA (September 2006). "What the primary care pediatrician should know about syndromes associated with exposures to mycotoxins". Current Problems in Pediatric and Adolescent Health Care. 36 (8): 282–305. doi:10.1016/j.cppeds.2006.05.003. PMID 16935759.
  69. Creasia DA, Lambert RJ, Beasley VR (1987-03-31). Acute Respiratory Tract Toxicity of the Trichothecene Mycotoxin, T-2 Toxin (Report).
  70. Vesper, Stephen J.; Vesper, Mary Jo (2002-04-01). "Stachylysin May Be a Cause of Hemorrhaging in Humans Exposed to Stachybotrys chartarum". Infection and Immunity. 70 (4): 2065–2069. doi:10.1128/IAI.70.4.2065-2069.2002. ISSN 0019-9567. PMC 127818. PMID 11895972.
  71. Vesper, Stephen J.; Magnuson, Matthew L.; Dearborn, Dorr G.; Yike, Iwona; Haugland, Richard A. (2001-02-01). "Initial Characterization of the Hemolysin Stachylysin from Stachybotrys chartarum". Infection and Immunity. 69 (2): 912–916. doi:10.1128/IAI.69.2.912-916.2001. ISSN 0019-9567. PMC 97969. PMID 11159985.
  72. Billings, Kurt; Billings, Lee Ann (2007). Mold: The War Within. Gatlinburg, TN: Partners Pub., LLC. ISBN 978-0-9721016-0-8. OCLC 171227483.
  73. Croft WA, Jarvis BB, Yatawara CS (1986). "Airborne outbreak of trichothecene toxicosis". Atmospheric Environment (1967). 20 (3): 549–52. Bibcode:1986AtmEn..20..549C. doi:10.1016/0004-6981(86)90096-X.
  74. Baldo JV, Ahmad L, Ruff R (2002). "Neuropsychological performance of patients following mold exposure". Applied Neuropsychology. 9 (4): 193–202. doi:10.1207/s15324826an0904_1. PMID 12584073. S2CID 22966117.
  75. Crago BR, Gray MR, Nelson LA, Davis M, Arnold L, Thrasher JD (August 2003). "Psychological, neuropsychological, and electrocortical effects of mixed mold exposure". Archives of Environmental Health. 58 (8): 452–63. doi:10.3200/aeoh.58.8.452-463. PMID 15259424. S2CID 13957522.
  76. Gray MR, Thrasher JD, Crago R, Madison RA, Arnold L, Campbell AW, Vojdani A (July 2003). "Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings". Archives of Environmental Health. 58 (7): 410–20. doi:10.1080/00039896.2003.11879142. PMID 15143854. S2CID 9653550.
  77. Vojdani, Aristo; Thrasher, Jack D.; Madison, Roberta A.; Gray, Michael R.; Heuser, Gunnar; Campbell, Andrew W. (2003-07-01). "Antibodies to Molds and Satratoxin in Individuals Exposed in Water-Damaged Buildings". Archives of Environmental Health. 58 (7): 421–432. doi:10.1080/00039896.2003.11879143. ISSN 0003-9896. PMID 15143855. S2CID 26167904.
  78. Fox DD, Greiffenstein MF, Lees-Haley PR (2005). "Commentary on cognitive impairment with toxigenic fungal exposure". Applied Neuropsychology. 12 (3): 129–33. doi:10.1207/s15324826an1203_1. PMID 16131338. S2CID 28445744.
  79. McCaffrey RJ, Yantz CL (2005). ""Cognitive impairment associated with toxigenic fungal exposure": a critique and critical analysis". Applied Neuropsychology. 12 (3): 134–7. doi:10.1207/s15324826an1203_2. PMID 16131339. S2CID 38601840.
  80. Gordon WA, Cantor JB, Spielman L, Ashman TA, Johanning E (2006). "Cognitive impairment associated with toxigenic fungal exposure: a response to two critiques". Applied Neuropsychology. 13 (4): 251–7. doi:10.1207/s15324826an1304_6. PMID 17362145. S2CID 20541284.
  81. Nevalainen A, Pasanen AL, Niininen M, Reponen T, Kalliokoski P, Jantunen MJ (1991-01-01). "The indoor air quality in Finnish homes with mold problems". Environment International. Healthy Buildings. 17 (4): 299–302. doi:10.1016/0160-4120(91)90015-I. ISSN 0160-4120.
  82. Garrett MH, Rayment PR, Hooper MA, Abramson MJ, Hooper BM (April 1998). "Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children". Clinical and Experimental Allergy. 28 (4): 459–67. doi:10.1046/j.1365-2222.1998.00255.x. PMID 9641573. S2CID 22799171.
  83. Strachan DP, Flannigan B, McCabe EM, McGarry F (May 1990). "Quantification of airborne moulds in the homes of children with and without wheeze". Thorax. 45 (5): 382–7. doi:10.1136/thx.45.5.382. PMC 462482. PMID 2382244.
  84. Reponen T, Seo SC, Grimsley F, Lee T, Crawford C, Grinshpun SA (December 2007). "Fungal Fragments in Moldy Houses: A Field Study in Homes in New Orleans and Southern Ohio". Atmospheric Environment. 41 (37): 8140–8149. Bibcode:2007AtmEn..41.8140R. doi:10.1016/j.atmosenv.2007.06.027. PMC 2153459. PMID 19050738.
  85. Nevalainen A, Täubel M, Hyvärinen A (April 2015). "Indoor fungi: companions and contaminants". Indoor Air. 25 (2): 125–56. doi:10.1111/ina.12182. PMID 25601374.
  86. Ammann HM (2016). "Inhalation Exposure and Toxic Effects of Mycotoxins". In Li DW (ed.). Biology of Microfungi. Fungal Biology. Cham: Springer International Publishing. pp. 495–523. doi:10.1007/978-3-319-29137-6_20. ISBN 978-3-319-29137-6.
  87. Hardin BD, Kelman BJ, Saxon A (May 2003). "Adverse human health effects associated with molds in the indoor environment". Journal of Occupational and Environmental Medicine. 45 (5): 470–8. doi:10.1097/00043764-200305000-00006. PMID 12762072. S2CID 6027519.
  88. Globaltox, Inc. (2003-04-30). "Globaltox Invoice to the Manhattan Institute for Project 6257" (PDF). Retrieved 2020-10-10.
  89. Manhattan Institute for Policy Research, Inc. (2003-06-01). "Check from the Manhattan Institute to Globaltox" (PDF). Retrieved 2020-10-10.
  90. Globaltox, Inc. (2003-03-28). "Letter of Acceptance from Globaltox to the Manhattan Institute for Project 6257" (PDF). Retrieved 2020-10-10.
  91. United States District Court for the District of Arizona (2004-06-22). "Testimony of Bruce J. Kelman" (PDF). Retrieved 2020-10-10.
  92. Kramer, Sharon (2005-03-09). "Jury Finds "Toxic Mold" Harmed Oregon Family, Builder's Arbitration Clause Not Binding". PRWeb. Retrieved 2020-10-09.
  93. Hahn & Bowersock. "Testimony of Bruce J. Kelman" (PDF).
  94. Superior Court of the State of California (2008-07-22). "Bruce J. Kelman, Globaltox, Inc., Plaintiff vs Sharon Kramer, and Does 1 through 20, inclusive, Defendants (Case No. GIN044539" (PDF). Retrieved 2020-11-03.
  95. U.S. Chamber Institute for Legal Reform; Center for Legal Policy at The Manhattan Institute (2003). The Growing Hazard of Mold Litigation (PDF). Web.
  96. "Brief of Amicus Curiae, National Apartment Association" (PDF). National Apartment Association. Court of Appeals, State of Arizona, Division One. 2009-08-31.
  97. "The Growing Hazard of Mold Litigation". U.S. Chamber of Commerce. 2013-11-22. Retrieved 2020-10-09.
  98. Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA (February 2006). "The medical effects of mold exposure". The Journal of Allergy and Clinical Immunology. 117 (2): 326–33. doi:10.1016/j.jaci.2005.12.001. PMID 16514772.
  99. Indoor Mold: Better Coordination of Research on Health Effects and More Consistent Guidance Would Improve Federal Efforts (Report). U.S. Government Accountability Office. 2008. GAO-08-980.
  100. Brown GC (September 2019). "The endotoxin hypothesis of neurodegeneration". Journal of Neuroinflammation. 16 (1): 180. doi:10.1186/s12974-019-1564-7. PMC 6744684. PMID 31519175.
  101. Hope J (2013-04-18). "A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins". TheScientificWorldJournal. 2013: 767482. doi:10.1155/2013/767482. PMC 3654247. PMID 23710148.
  102. Thrasher JD, Crawley S (2009). "The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes". Toxicology and Industrial Health. 25 (9–10): 583–615. doi:10.1177/0748233709348386. PMID 19793773. S2CID 24335115.
  103. Ratnaseelan AM, Tsilioni I, Theoharides TC (June 2018). "Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes". Clinical Therapeutics. 40 (6): 903–917. doi:10.1016/j.clinthera.2018.05.004. PMID 29880330.
  104. Morris G, Berk M, Walder K, Maes M (May 2016). "The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability". Molecular Neurobiology. 53 (4): 2550–71. doi:10.1007/s12035-015-9262-7. PMID 26081141. S2CID 14712633.
  105. Kilburn KH (2009-10-01). "Neurobehavioral and pulmonary impairment in 105 adults with indoor exposure to molds compared to 100 exposed to chemicals". Toxicology and Industrial Health. 25 (9–10): 681–92. doi:10.1177/0748233709348390. PMID 19793776. S2CID 1692592.
  106. Kuhn DM, Ghannoum MA (January 2003). "Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective". Clinical Microbiology Reviews. 16 (1): 144–72. doi:10.1128/CMR.16.1.144-172.2003. PMC 145304. PMID 12525430.
  107. Valtonen V (2017). "Clinical Diagnosis of the Dampness and Mold Hypersensitivity Syndrome: Review of the Literature and Suggested Diagnostic Criteria". Frontiers in Immunology. 8: 951. doi:10.3389/fimmu.2017.00951. PMC 5554125. PMID 28848553.
  108. Beijer L, Thorn J, Rylander R (June 2002). "Effects after inhalation of (1-->3)-beta-D-glucan and relation to mould exposure in the home". Mediators of Inflammation. 11 (3): 149–53. doi:10.1080/09622935020138181. PMC 1781656. PMID 12137243.
  109. Leino M, Mäkelä M, Reijula K, Haahtela T, Mussalo-Rauhamaa H, Tuomi T, et al. (November 2003). "Intranasal exposure to a damp building mould, Stachybotrys chartarum, induces lung inflammation in mice by satratoxin-independent mechanisms". Clinical and Experimental Allergy. 33 (11): 1603–10. doi:10.1046/j.1365-2222.2003.01808.x. PMID 14616875. S2CID 13130251.
  110. Yike I, Rand TG, Dearborn DG (April 2005). "Acute inflammatory responses to Stachybotrys chartarum in the lungs of infant rats: time course and possible mechanisms". Toxicological Sciences. 84 (2): 408–17. doi:10.1093/toxsci/kfi080. PMID 15647601.
  111. Rand TG, Sun M, Gilyan A, Downey J, Miller JD (March 2010). "Dectin-1 and inflammation-associated gene transcription and expression in mouse lungs by a toxic (1,3)-beta-D glucan". Archives of Toxicology. 84 (3): 205–20. doi:10.1007/s00204-009-0481-4. PMID 19904525. S2CID 27458617.
  112. Dambuza IM, Levitz SM, Netea MG, Brown GD (July 2017). "Fungal Recognition and Host Defense Mechanisms". Microbiology Spectrum. 5 (4): 887–902. doi:10.1128/microbiolspec.FUNK-0050-2016. hdl:2164/9960. ISBN 978-1555819576. PMID 28752813.
  113. Harding CF, Pytte CL, Page KG, Ryberg KJ, Normand E, Remigio GJ, et al. (July 2020). "Mold inhalation causes innate immune activation, neural, cognitive and emotional dysfunction". Brain, Behavior, and Immunity. 87: 218–228. doi:10.1016/j.bbi.2019.11.006. PMC 7231651. PMID 31751617.
  114. Harding CF, Liao D, Persaud R, Lin K, Page K, Pytte C (2015-10-01). "Environmental mold exposure, brain inflammation, and spatial memory deficits". Brain, Behavior, and Immunity. PsychoNeuroImmunology Research Society's 22nd Annual Scientific Meeting. 49: e42. doi:10.1016/j.bbi.2015.06.160. S2CID 53155076.
  115. Zhang X, Sahlberg B, Wieslander G, Janson C, Gislason T, Norback D (July 2012). "Dampness and moulds in workplace buildings: associations with incidence and remission of sick building syndrome (SBS) and biomarkers of inflammation in a 10 year follow-up study". The Science of the Total Environment. 430: 75–81. Bibcode:2012ScTEn.430...75Z. doi:10.1016/j.scitotenv.2012.04.040. PMID 22634552.
  116. Kilburn KH, Thrasher JD, Immers NB (2009-10-01). "Do terbutaline- and mold-associated impairments of the brain and lung relate to autism?". Toxicology and Industrial Health. 25 (9–10): 703–10. doi:10.1177/0748233709348391. PMID 19793774. S2CID 31648818.
  117. Angelidou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, et al. (November 2011). "Brief report: "allergic symptoms" in children with Autism Spectrum Disorders. More than meets the eye?". Journal of Autism and Developmental Disorders. 41 (11): 1579–85. doi:10.1007/s10803-010-1171-z. PMID 21210299. S2CID 16366525.
  118. De Santis B, Brera C, Mezzelani A, Soricelli S, Ciceri F, Moretti G, et al. (February 2019). "Role of mycotoxins in the pathobiology of autism: A first evidence". Nutritional Neuroscience. 22 (2): 132–144. doi:10.1080/1028415X.2017.1357793. PMID 28795659. S2CID 32224628.
  119. De Santis B, Raggi ME, Moretti G, Facchiano F, Mezzelani A, Villa L, et al. (June 2017). "Study on the Association among Mycotoxins and other Variables in Children with Autism". Toxins. 9 (7): 203. doi:10.3390/toxins9070203. PMC 5535150. PMID 28661468.
  120. Baker S, Shaw W (August 2020). "Case Study: Rapid Complete Recovery From An Autism Spectrum Disorder After Treatment of Aspergillus With The Antifungal Drugs Itraconazole And Sporanox". Integrative Medicine. 19 (4): 20–27. PMC 7572136. PMID 33132781.
  121. Karunasena E, Larrañaga MD, Simoni JS, Douglas DR, Straus DC (December 2010). "Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment". Mycopathologia. 170 (6): 377–90. doi:10.1007/s11046-010-9330-5. PMID 20549560. S2CID 319228.
  122. Rosenblum Lichtenstein JH, Hsu YH, Gavin IM, Donaghey TC, Molina RM, Thompson KJ, et al. (2015-05-26). "Environmental mold and mycotoxin exposures elicit specific cytokine and chemokine responses". PLOS ONE. 10 (5): e0126926. Bibcode:2015PLoSO..1026926R. doi:10.1371/journal.pone.0126926. PMC 4444319. PMID 26010737.
  123. Punsmann S, Liebers V, Lotz A, Brüning T, Raulf M (2013-12-10). "Ex vivo cytokine release and pattern recognition receptor expression of subjects exposed to dampness: pilot study to assess the outcome of mould exposure to the innate immune system". PLOS ONE. 8 (12): e82734. Bibcode:2013PLoSO...882734P. doi:10.1371/journal.pone.0082734. PMC 3858334. PMID 24340055.
  124. Mustonen K, Karvonen AM, Kirjavainen P, Roponen M, Schaub B, Hyvärinen A, et al. (June 2016). "Moisture damage in home associates with systemic inflammation in children". Indoor Air. 26 (3): 439–47. doi:10.1111/ina.12216. PMID 25924948.
  125. Jedrychowski W, Maugeri U, Perera F, Stigter L, Jankowski J, Butscher M, et al. (October 2011). "Cognitive function of 6-year old children exposed to mold-contaminated homes in early postnatal period. Prospective birth cohort study in Poland". Physiology & Behavior. 104 (5): 989–95. doi:10.1016/j.physbeh.2011.06.019. PMC 3758954. PMID 21763705.
  126. Casas L, Torrent M, Zock JP, Doekes G, Forns J, Guxens M, et al. (November 2013). "Early life exposures to home dampness, pet ownership and farm animal contact and neuropsychological development in 4 year old children: a prospective birth cohort study". International Journal of Hygiene and Environmental Health. 216 (6): 690–7. doi:10.1016/j.ijheh.2012.12.013. PMID 23357052.
  127. Theoharides TC, Kavalioti M, Martinotti R (2019). "Factors adversely influencing neurodevelopment". Journal of Biological Regulators and Homeostatic Agents. 33 (6): 1663–1667. doi:10.23812/19-33n6Edit_Theoharides. PMID 31928596.
  128. Lebrun B, Tardivel C, Félix B, Abysique A, Troadec JD, Gaigé S, Dallaporta M (July 2015). "Dysregulation of energy balance by trichothecene mycotoxins: Mechanisms and prospects". Neurotoxicology. 49: 15–27. doi:10.1016/j.neuro.2015.04.009. PMID 25956358.
  129. Terciolo C, Maresca M, Pinton P, Oswald IP (November 2018). "Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins". Food and Chemical Toxicology. 121: 701–714. doi:10.1016/j.fct.2018.09.034. PMID 30243968.
  130. Shoemaker RC, House D, Ryan JC (2014). "Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®". Neurotoxicology and Teratology. 45: 18–26. doi:10.1016/j.ntt.2014.06.004. PMID 24946038.
  131. McMahon SW, Shoemaker RC, Ryan JC (2016). "Reduction in Forebrain Parenchymal and Cortical Grey Matter Swelling across Treatment Groups in Patients with Inflammatory Illness Acquired Following Exposure to Water-Damaged Buildings" (PDF). Journal of Neuroscience & Clinical Research. 1 (1): 1–4.
  132. Bredesen DE (February 2016). "Inhalational Alzheimer's disease: an unrecognized - and treatable - epidemic". Aging. 8 (2): 304–13. doi:10.18632/aging.100896. PMC 4789584. PMID 26870879.
  133. Bredesen DE (August 2015). "Metabolic profiling distinguishes three subtypes of Alzheimer's disease". Aging. 7 (8): 595–600. doi:10.18632/aging.100801. PMC 4586104. PMID 26343025.
  134. Eiser AR (September 2017). "Why does Finland have the highest dementia mortality rate? Environmental factors may be generalizable". Brain Research. 1671: 14–17. doi:10.1016/j.brainres.2017.06.032. PMID 28687259. S2CID 206338668.
  135. Heseltine E, Rosen J (2009). WHO guidelines for indoor air quality : dampness and mould. WHO Regional Office for Europe. ISBN 978-92-890-4168-3. OCLC 429024432.
  136. Mudarri D, Fisk WJ (June 2007). "Public health and economic impact of dampness and mold". Indoor Air. 17 (3): 226–35. doi:10.1111/j.1600-0668.2007.00474.x. PMID 17542835.
  137. Wang J, Janson C, Lindberg E, Holm M, Gislason T, Benediktsdóttir B, et al. (June 2020). "Dampness and mold at home and at work and onset of insomnia symptoms, snoring and excessive daytime sleepiness". Environment International. 139: 105691. doi:10.1016/j.envint.2020.105691. PMID 32272294.
  138. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD (July 2020). "Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls". Brain, Behavior, and Immunity. 87: 901–909. doi:10.1016/j.bbi.2020.02.010. PMC 7327519. PMID 32113908.
  139. Shenassa ED, Daskalakis C, Liebhaber A, Braubach M, Brown M (October 2007). "Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one's home as possible depression pathways". American Journal of Public Health. 97 (10): 1893–9. doi:10.2105/AJPH.2006.093773. PMC 1994167. PMID 17761567.
  140. Bhattacharya A, Derecki NC, Lovenberg TW, Drevets WC (May 2016). "Role of neuro-immunological factors in the pathophysiology of mood disorders". Psychopharmacology. 233 (9): 1623–36. doi:10.1007/s00213-016-4214-0. PMID 26803500. S2CID 14265548.
  141. Campos AC, Antunes GF, Matsumoto M, Pagano RL, Martinez RC (2020-07-31). "Neuroinflammation, Pain and Depression: An Overview of the Main Findings". Frontiers in Psychology. 11: 1825. doi:10.3389/fpsyg.2020.01825. PMC 7412934. PMID 32849076.
  142. Dedesko S, Siegel JA (December 2015). "Moisture parameters and fungal communities associated with gypsum drywall in buildings". Microbiome. 3 (1): 71. doi:10.1186/s40168-015-0137-y. PMC 4672539. PMID 26642923.
  143. Andersen B, Dosen I, Lewinska AM, Nielsen KF (January 2017). "Pre-contamination of new gypsum wallboard with potentially harmful fungal species". Indoor Air. 27 (1): 6–12. doi:10.1111/ina.12298. PMID 26970063. S2CID 6656218.
  144. Gravesen S, Nielsen PA, Iversen R, Nielsen KF (June 1999). "Microfungal contamination of damp buildings--examples of risk constructions and risk materials". Environmental Health Perspectives. 107 Suppl 3 (Suppl 3): 505–8. doi:10.1289/ehp.99107s3505. PMC 1566214. PMID 10347000.
  145. Thrasher JD, Crawley S (2009-09-30). "The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes". Toxicology and Industrial Health. 25 (9–10): 583–615. doi:10.1177/0748233709348386. PMID 19793773. S2CID 24335115.
  146. Barbeau DN, Grimsley LF, White LE, El-Dahr JM, Lichtveld M (2010). "Mold exposure and health effects following hurricanes Katrina and Rita". Annual Review of Public Health. 31: 165–78 1 p following 178. doi:10.1146/annurev.publhealth.012809.103643. PMID 20070193.
  147. Shoemaker RC, House DE (2006). "Sick building syndrome (SBS) and exposure to water-damaged buildings: time series study, clinical trial and mechanisms". Neurotoxicology and Teratology. 28 (5): 573–88. doi:10.1016/j.ntt.2006.07.003. PMID 17010568.
  148. Kumar M, Verma RK (September 2010). "Fungi diversity, their effects on building materials, occupants and control – a brief review". Journal of Scientific and Industrial Research. 69 (9): 657–61. ISSN 0975-1084.
  149. Wilson SC, Holder WH, Easterwood KV, et al. (2004). Identification, remediation, and monitoring processes used in a mold-contaminated high school. Adv. Appl. Microbiol. Advances in Applied Microbiology. 55. pp. 409–23. doi:10.1016/S0065-2164(04)55016-5. ISBN 978-0120026579. PMID 15350804.
  150. Samson RA, Hoekstra ES, Frisvad JC (2000). Introduction to food- and airborne fungi (6. rev. ed.). Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures. ISBN 978-9070351427.
  151. Kankolongo M, Hell K, Nawa I (June 2009). "Assessment for fungal, mycotoxin and insect spoilage in maize stored for human consumption in Zambia". J. Sci. Food Agric. 89 (8): 1366–75. doi:10.1002/jsfa.3596.
  152. Upadhaya S, Park M, Ha J (September 2010). "Mycotoxins and their biotransformation in the rumen: a review". Asian-Australasian Journal of Animal Sciences. 23 (9): 1250–59. doi:10.5713/ajas.2010.r.06. Archived from the original on 2013-12-03.
  153. Reddy K, Salleh B, Saad B, Abbas H, Abel C, Shier W (2010). "An overview of mycotoxin contamination in foods and its implications for human health". Toxin Reviews. 29 (1): 3–26. doi:10.3109/15569541003598553. S2CID 84659808.
  154. He J, Zhou T (June 2010). "Patented techniques for detoxification of mycotoxins in feeds and food matrices". Recent Patents on Food, Nutrition & Agriculture. 2 (2): 96–104. doi:10.2174/1876142911002020096. PMID 20653554.
  155. Liu Y, Wu F (June 2010). "Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment". Environmental Health Perspectives. 118 (6): 818–24. doi:10.1289/ehp.0901388. PMC 2898859. PMID 20172840.
  156. Tanuma H, Hiramatsu M, Mukai H, Abe M, Kume H, Nishiyama S, Katsuoka K (2000). "Case report. A case of chromoblastomycosis is effectively treated with terbinafine. Characteristics of chromoblastomycosis in the Kitasato region, Japan". Mycoses. 43 (1–2): 79–83. doi:10.1046/j.1439-0507.2000.00548.x. PMID 10838854. S2CID 34336071.
  157. "Tainted Mengniu Milk Products Caused by Mildewed Feed, Regulator Says". Bloomberg. December 26, 2011.
  158. Boor BE, Spilak MP, Laverge J, Novoselac A, Xu Y (2017-11-15). "Human exposure to indoor air pollutants in sleep microenvironments: A literature review". Building and Environment. 125: 528–555. doi:10.1016/j.buildenv.2017.08.050. ISSN 0360-1323.
  159. Woodcock AA, Steel N, Moore CB, Howard SJ, Custovic A, Denning DW (January 2006). "Fungal contamination of bedding". Allergy. 61 (1): 140–2. doi:10.1111/j.1398-9995.2005.00941.x. PMID 16364170. S2CID 31146654.
  160. Siebers R, Parkes A, Crane J (July 2006). "Beta-(1,3)-glucan on pillows". Allergy. 61 (7): 901–2. doi:10.1111/j.1398-9995.2006.01111.x. PMID 16792597. S2CID 43064735.
  161. Kanchongkittiphon W, Mendell MJ, Gaffin JM, Wang G, Phipatanakul W (January 2015). "Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine". Environmental Health Perspectives. 123 (1): 6–20. doi:10.1289/ehp.1307922. PMC 4286274. PMID 25303775.
  162. Choi O, Yu CP, Esteban Fernández G, Hu Z (December 2010). "Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures". Water Research. 44 (20): 6095–103. doi:10.1016/j.watres.2010.06.069. PMID 20659752.
  163. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. (April 2006). "Proteomic analysis of the mode of antibacterial action of silver nanoparticles". Journal of Proteome Research. 5 (4): 916–24. doi:10.1021/pr0504079. PMID 16602699.
  164. Sotiriou GA, Pratsinis SE (July 2010). "Antibacterial activity of nanosilver ions and particles". Environmental Science & Technology. 44 (14): 5649–54. doi:10.1021/es101072s. PMID 20583805.
  165. Wright JB, Lam K, Hansen D, Burrell RE (August 1999). "Efficacy of topical silver against fungal burn wound pathogens". American Journal of Infection Control. 27 (4): 344–50. doi:10.1016/S0196-6553(99)70055-6. PMID 10433674.
  166. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (January 2010). "Mode of antiviral action of silver nanoparticles against HIV-1". Journal of Nanobiotechnology. 8 (1): 1. doi:10.1186/1477-3155-8-1. PMC 2818642. PMID 20145735.
  167. Prasath S, Palaniappan K (October 2019). "Is using nanosilver mattresses/pillows safe? A review of potential health implications of silver nanoparticles on human health". Environmental Geochemistry and Health. 41 (5): 2295–2313. doi:10.1007/s10653-019-00240-7. PMID 30671691. S2CID 58947744.
  168. Brandt M, Brown C, Burkhart J, Burton N, Cox-Ganser J, Damon S, et al. (June 2006). "Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods". MMWR. Recommendations and Reports. 55 (RR-8): 1–27. JSTOR 24842334. PMID 16760892.
  169. Sakula, A. (1984). "Sir John Floyer's A Treatise of the Asthma (1698)". Thorax. 39 (4): 248–254. doi:10.1136/thx.39.4.248. ISSN 0040-6376. PMC 459778. PMID 6372153.
  170. Floyer, John (1698). A Treatise of the Asthma (Divided into Four Parts). London, U.K. pp. 55–61.
  171. Miller JD, Rand TG, Jarvis BB (August 2003). "Stachybotrys chartarum: cause of human disease or media darling?". Medical Mycology. 41 (4): 271–91. doi:10.1080/1369378031000137350. PMID 12964721.
  172. Landrigan PJ, Etzel RA (2013). Textbook of Children's Environmental Health. Oxford University Press. ISBN 978-0-19-933665-4.
  173. Beech, A (2018-10-24). "When your home poisons you". ABC News. Retrieved 2020-08-24.
  174. Baker, J (2017-08-19). "PM's office literally makes MP ill". The Daily Telegraph. Retrieved 2020-08-24.
  175. Commonwealth of Australia (2018-10-30). "Report on the Inquiry into Biotoxin-related Illnesses in Australia". Parliament of Australia. Retrieved 2020-08-24.
  176. McPherson, E (2018-04-30). "Mould in your home: MP calls for national inquiry to investigate health impact". 9 News. Retrieved 2020-08-24.
  177. Commonwealth of Australia (2018-10-30). "List of Recommendations (Report on the Inquiry into Biotoxin-related Illnesses in Australia)". Parliament of Australia. Retrieved 2020-08-24.
  178. Parliament of the Commonwealth of Australia (2018). Report on the Inquiry into Biotoxin-related Illnesses in Australia. Commonwealth of Australia. https://parlinfo.aph.gov.au/parlInfo/download/committees/reportrep/024194/toc_pdf/ReportontheInquiryintoBiotoxin-relatedIllnessesinAustralia.pdf;fileType=application%2Fpdf
  179. Commonwealth of Australia (2020-03-03). "Government Response (Report on the Inquiry into Biotoxin-related Illnesses in Australia)". Parliament of the Commonwealth of Australia. Retrieved 2020-10-11.
  180. "Big changes afoot | Australian Building Codes Board". www.abcb.gov.au. Retrieved 2020-08-27.
  181. "Condensation handbook updated for NCC provisions – Climate Control News". www.climatecontrolnews.com.au. Retrieved 2020-08-27.
  182. "NCC | Australian Building Codes Board". ncc.abcb.gov.au. Retrieved 2020-08-27.
  183. "CDC - Mold - General Information - Basic Facts". Centers for Disease Control and Prevention. 2020-08-12. Retrieved 2020-11-04.
  184. Brinkman M (December 20, 2005). "Diamond Pet Food Recalled Due to Aflatoxin". FDA.gov. Retrieved May 9, 2014.
  185. FDA, Center for Veterinary Medicine Communications Staff (December 30, 2005). "FDA Investigation of Diamond Pet Food Finds Some Product Exported". FDA.gov. Retrieved May 9, 2014.
  186. Williams A. "Spore War; New York has all the right conditions for a mold outbreak: middle-age buildings, lots of lawyers – and Bianca Jagger as toxic avenger". New York Magazine. Retrieved October 26, 2014.
  187. Tapia C (November 26, 2001). "Jury Awards $2.7M In Calif. Mold Case". Insurance Journal. Retrieved October 26, 2014.
  188. Industry Trade and Technology Review. U.S. International Trade Commission. 2005. ISBN 978-1457819612. Retrieved October 27, 2014.
  189. Jay Romano (January 26, 2003), "Your Home; Managing Mold, and Lawsuits", The New York Times
  190. Guccione J (May 9, 2003). "Ed McMahon Settles Suit Over Mold for $7.2 Million; TV celebrity and his wife said contamination of their home made them ill, killed their dog". Los Angeles Times. Retrieved October 26, 2014.
  191. Lee G (September 16, 2003). "Activist Erin Brockovich Settles Home Mold Suit". Daily News. Retrieved October 27, 2014.
  192. Dolan Newswire (January 11, 2006). "California construction defect lawsuit settles for $22 million". Daily Journal of Commerce. Retrieved October 26, 2014.
  193. "Hilton gets $25M from mold lawsuit". Honolulu Star-Bulletin. May 3, 2006. Retrieved October 26, 2014.
  194. Oyama J (April 29, 2010). "Family wins mold lawsuit". Coastline Pilot. Retrieved October 26, 2014.
  195. McConnell S (February 24, 2011). "$4.3M mold verdict buried in litigation". The Times-Tribune. Retrieved October 26, 2014.
  196. Barbanel J (April 2, 2012). "Mold Claims For Damages Get New Life". Wall Street Journal. Retrieved October 26, 2014.
  197. "Mold Remediation After a Flood". Boulder County. Retrieved 2017-10-25.
  198. State of California (2015). "Health and Safety Code: Section 17920.3". California Legislative Information. Retrieved 2020-11-03.
  199. State of California (2020). "Healthy Homes and Communities". California Department of Public Health. Retrieved 2020-11-03.
  200. Burks, Megan. "California Law Gives Tenants New Recourse For Moldy Apartments". KPBS Public Media. Retrieved 2020-11-03.
  201. Environmental Health Laboratory Branch (2016). "Statement on Building Dampness, Mold, and Health" (PDF). California Department of Public Health.
  202. "Health Effects of Toxic Mold Exposure | Indoor Air Quality". LaFave Law Group. 2020. Retrieved 2020-11-03.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.