Methanosaeta
In taxonomy, Methanosaeta is a genus of microbes within Methanosaetaceae.[1] Like other species in this family, those of Methanosaeta metabolize acetate as their sole source of energy. The genus contains two species, Methanosaeta concilii, which is the type species (type train GP6) and Methanosaeta thermophila. For a time, some scientists believed there to be a third species, Methanosaeta soehngenii, but because it has not been described from a pure culture, it is now called Methanothrix soehngenii.[2]
Methanosaeta | |
---|---|
Scientific classification | |
Domain: | |
Kingdom: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | Methanosaeta |
Binomial name | |
Methanosaeta Patel and Sprott 1990 | |
Species | |
| |
Synonyms | |
|
Importance
Methanosaeta species are some of the most active methanogens in wetlands, producing an extensive amount of methane on Earth. The presence of methane is both good and bad. On one hand, methane is 20 times more effective than carbon dioxide in retaining heat—thus contributing to global warming at an increasing rate. On the other hand, methane can be used as bioenergy in an effort to move from large-scale fossil fuel usage to large-scale bioenergy usage, reducing carbon emissions. Scientists at UMass Amherst discovered that Methanosaeta have the ability to reduce carbon dioxide to methane through electrical connections with other microorganisms.[3]
References
- See the NCBI webpage on Methanosaeta. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information. Retrieved 2007-03-19.
- Stanley Falkow; Eugene Rosenberg; Karl-Heinz Schleifer; Erko Stackebrandt, eds. (2006-10-10). The Prokaryotes. 3. Springer Science & Business Media. p. 254. ISBN 978-0387254937. Retrieved 2016-08-23.
- "Energy & Environmental Science." A New Model for Electron Flow during Anaerobic Digestion: Direct Interspecies Electron Transfer to Methanosaeta for the Reduction of Carbon Dioxide to Methane - (RSC Publishing). N.p., n.d. Web. 02 June 2014.
Further reading
Scientific journals
- Lee, J.; Hwang, B.; Koo, T.; Shin, S. G.; Kim, W.; Hwang, S. (2014). "Temporal variation in methanogen communities of four different full-scale anaerobic digesters treating food waste-recycling wastewater". Bioresource Technology. 168: 59–63. doi:10.1016/j.biortech.2014.03.161. PMID 24767792.
- Patel, G. B.; Sprott, G. D. (1990). "Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov." International Journal of Systematic Bacteriology. 40: 79–82. doi:10.1099/00207713-40-1-79.
- Buchanan, R. E. (1960). "Chemical Terminology and Microbiological Nomenclature". International Bulletin of Bacteriological Nomenclature and Taxonomy. 10: 16–22. doi:10.1099/0096266X-10-1-16.
Scientific books
- Boone DR; Whitman WB; Koga Y (2001). "Family II. Methanosaetaceae fam. nov.". In DR Boone; RW Castenholz (eds.). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. ISBN 978-0-387-98771-2.
External links
- NCBI taxonomy page for Methanosaeta
- Search Tree of Life taxonomy pages for Methanosaeta
- Search Species2000 page for Methanosaeta
- MicrobeWiki page for Methanosaeta
- LPSN page for Methanosaeta