Mathieu group M23
In the area of modern algebra known as group theory, the Mathieu group M23 is a sporadic simple group of order
- 27 · 32 · 5 · 7 · 11 · 23 = 10200960
- ≈ 1×107.
Algebraic structure → Group theory Group theory |
---|
History and properties
M23 is one of the 26 sporadic groups and was introduced by Mathieu (1861, 1873). It is a 4-fold transitive permutation group on 23 objects. The Schur multiplier and the outer automorphism group are both trivial.
Milgram (2000) calculated the integral cohomology, and showed in particular that M23 has the unusual property that the first 4 integral homology groups all vanish.
The inverse Galois problem seems to be unsolved for M23. In other words, no polynomial in Z[x] seems to be known to have M23 as its Galois group. The inverse Galois problem is solved for all other sporadic simple groups.
Construction using finite fields
Let F211 be the finite field with 211 elements. Its group of units has order 211 − 1 = 2047 = 23 · 89, so it has a cyclic subgroup C of order 23.
The Mathieu group M23 can be identified with the group of F2-linear automorphisms of F211 that stabilize C. More precisely, the action of this automorphism group on C can be identified with the 4-fold transitive action of M23 on 23 objects.
Representations
M23 is the point stabilizer of the action of the Mathieu group M24 on 24 points, giving it a 4-transitive permutation representation on 23 points with point stabilizer the Mathieu group M22.
M23 has 2 different rank 3 actions on 253 points. One is the action on unordered pairs with orbit sizes 1+42+210 and point stabilizer M21.2, and the other is the action on heptads with orbit sizes 1+112+140 and point stabilizer 24.A7.
The integral representation corresponding to the permutation action on 23 points decomposes into the trivial representation and a 22-dimensional representation. The 22-dimensional representation is irreducible over any field of characteristic not 2 or 23.
Over the field of order 2, it has 2 11-dimensional representations, the restrictions of the corresponding representations of the Mathieu group M24.
Maximal subgroups
There are 7 conjugacy classes of maximal subgroups of M23 as follows:
- M22, order 443520
- PSL(3,4):2, order 40320, orbits of 21 and 2
- 24:A7, order 40320, orbits of 7 and 16
- Stabilizer of W23 block
- A8, order 20160, orbits of 8 and 15
- M11, order 7920, orbits of 11 and 12
- (24:A5):S3 or M20:S3, order 5760, orbits of 3 and 20 (5 blocks of 4)
- One-point stabilizer of the sextet group
- 23:11, order 253, simply transitive
Conjugacy classes
Order | No. elements | Cycle structure | |
---|---|---|---|
1 = 1 | 1 | 123 | |
2 = 2 | 3795 = 3 · 5 · 11 · 23 | 1728 | |
3 = 3 | 56672 = 25 · 7 · 11 · 23 | 1536 | |
4 = 22 | 318780 = 22 · 32 · 5 · 7 · 11 · 23 | 132244 | |
5 = 5 | 680064 = 27 · 3 · 7 · 11 · 23 | 1354 | |
6 = 2 · 3 | 850080 = 25 · 3 · 5 · 7 · 11 · 23 | 1·223262 | |
7 = 7 | 728640 = 26 · 32 · 5 · 11 · 23 | 1273 | power equivalent |
728640 = 26 · 32 · 5 · 11 · 23 | 1273 | ||
8 = 23 | 1275120 = 24 · 32 · 5 · 7 · 11 · 23 | 1·2·4·82 | |
11 = 11 | 927360= 27 · 32 · 5 · 7 · 23 | 1·112 | power equivalent |
927360= 27 · 32 · 5 · 7 · 23 | 1·112 | ||
14 = 2 · 7 | 728640= 26 · 32 · 5 · 11 · 23 | 2·7·14 | power equivalent |
728640= 26 · 32 · 5 · 11 · 23 | 2·7·14 | ||
15 = 3 · 5 | 680064= 27 · 3 · 7 · 11 · 23 | 3·5·15 | power equivalent |
680064= 27 · 3 · 7 · 11 · 23 | 3·5·15 | ||
23 = 23 | 443520= 27 · 32 · 5 · 7 · 11 | 23 | power equivalent |
443520= 27 · 32 · 5 · 7 · 11 | 23 |
References
- Cameron, Peter J. (1999), Permutation Groups, London Mathematical Society Student Texts, 45, Cambridge University Press, ISBN 978-0-521-65378-7
- Carmichael, Robert D. (1956) [1937], Introduction to the theory of groups of finite order, New York: Dover Publications, ISBN 978-0-486-60300-1, MR 0075938
- Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham (eds.), Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
- Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 0827219
- Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, 290 (3rd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2016-7, ISBN 978-0-387-98585-5, MR 0920369
- Cuypers, Hans, The Mathieu groups and their geometries (PDF)
- Dixon, John D.; Mortimer, Brian (1996), Permutation groups, Graduate Texts in Mathematics, 163, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0731-3, ISBN 978-0-387-94599-6, MR 1409812
- Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-03516-0, ISBN 978-3-540-62778-4, MR 1707296
- Mathieu, Émile (1861), "Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables", Journal de Mathématiques Pures et Appliquées, 6: 241–323
- Mathieu, Émile (1873), "Sur la fonction cinq fois transitive de 24 quantités", Journal de Mathématiques Pures et Appliquées (in French), 18: 25–46, JFM 05.0088.01
- Milgram, R. James (2000), "The cohomology of the Mathieu group M₂₃", Journal of Group Theory, 3 (1): 7–26, doi:10.1515/jgth.2000.008, ISSN 1433-5883, MR 1736514
- Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs, 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 0749038
- Witt, Ernst (1938a), "über Steinersche Systeme", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 12: 265–275, doi:10.1007/BF02948948, ISSN 0025-5858
- Witt, Ernst (1938b), "Die 5-fach transitiven Gruppen von Mathieu", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 12: 256–264, doi:10.1007/BF02948947