Livermore Optical Transient Imaging System

The Livermore Optical Transient Imaging System, or LOTIS, is an automated telescope designed to slew very rapidly to the location of gamma-ray bursts (GRBs), to enable the simultaneous measurement of optical counterparts.[1] Since GRBs can occur anywhere in the sky, are often poorly localized, and fade very quickly, this implies very rapid slewing (less than 10 sec) and a wide field of view (greater than 15 degrees). To achieve the needed response time, LOTIS was fully automated and connected via Internet socket to the Gamma-ray Burst Coordinates Network. This network analyzes telemetry from satellite such as HETE-2 and Swift Gamma-Ray Burst Mission and delivers GRB coordinate information in real-time.. The optics were built from 4 commercial tele-photo lenses of 11 cm aperture, with custom 2048 X 2048 CCD cameras, and could view a 17.6 X 17.6 degree field.

Livermore Optical Transient Imaging System
Alternative namesLOTIS
Location(s)California
First lightOctober 1996 
Telescope styleoptical telescope
robotic telescope 
Number of telescopes4 
Diameter11 cm (4.3 in)

LOTIS started routine operation in October 1996, with a limiting magnitude Mv≈11.5 . In March 1998 it was upgraded with cooled cameras, resulting in a limiting sensitivity of Mv≈14.[2] It was in operation until at least 2001, but never successfully detected the optical counterpart of a GRB, though it did set upper limits. By 2001, the 4 cameras had been co-aligned and two of them had added filters.[3] In the idle time between GRB triggers, LOTIS systematically surveyed the entire available sky every night for new optical transients. LOTIS was succeeded by another robotic telescope with a larger mirror but smaller field of view, called Super-LOTIS.

See also

References

  1. Park, H.S. and Ables, E. and Barthelmy, S.D. and Bionta, R.M. and Ott, L.L. and Parker, E.L. and Williams, G.G. (1998). "Instrumentation of LOTIS--Livermore Optical Transient Imaging System: a fully automated wide-field-of-view telescope system searching for simultaneous optical counterparts of gamma-ray bursts". Proceedings of SPIE. 3355. p. 658. doi:10.1117/12.316790.CS1 maint: multiple names: authors list (link)
  2. Williams, GG and Hartmann, DH and Park, HS and Porrata, RA and Ables, E. and Bionta, R. and Band, DL and Barthelmy, SD and Gehrels, N. and Ferguson, DH; et al. (1999). "LOTIS Upper Limits and the Prompt OT from GRB 990123". AIP Conference Proceedings. 526: 250–254. arXiv:astro-ph/9912402. doi:10.1063/1.1361544. S2CID 17001462.CS1 maint: multiple names: authors list (link)
  3. Park, HS and Williams, GG and Hartmann, DH and Lamb, DQ and Lee, BC and Tucker, DL and Klose, S. and Stecklum, B. and Henden, A. and Adelman, J.; et al. (2001). "LOTIS, Super-LOTIS, SDSS and Tautenburg Observations of GRB 010921". The Astrophysical Journal Letters. 571 (2): L131. arXiv:astro-ph/0112397. Bibcode:2002ApJ...571L.131P. doi:10.1086/341334. S2CID 31515787.CS1 maint: multiple names: authors list (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.