List of superconductors

The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.

List

Substance Class TC (K) HC (T) Type BCS References
Al Element 1.20 0.01 I yes [1][2][3]
Bi Element 5.3×10−4 5.2×10−6 I no [note 1] [4]
Cd Element 0.52 0.0028 I yes [2][3]
Diamond:B Element 11.4 4 II yes [5][6][7]
Ga Element 1.083 0.0058 I yes [2][3][8]
Hf Element 0.165 I yes [2]
α-Hg Element 4.15 0.04 I yes [2][3]
β-Hg Element 3.95 0.04 I yes [2][3]
In Element 3.4 0.03 I yes [2][3]
Ir Element 0.14 0.0016 I yes [2][8]
α-La Element 4.9 I yes [2]
β-La Element 6.3 I yes [2]
Li Element 4×10−4 I [9]
Mo Element 0.92 0.0096 I yes [2][8]
Nb Element 9.26 0.82 II yes [2][3]
Os Element 0.65 0.007 I yes [2]
Pa Element 1.4 I yes [10]
Pb Element 7.19 0.08 I yes [2][3]
Re Element 2.4 0.03 I yes [2][3][11]
Rh Element 3.25×10−4 4.9×10−6 I [12]
Ru Element 0.49 0.005 I yes [2][3]
Si:B Element 0.4 0.4 II yes [13]
Sn Element 3.72 0.03 I yes [2][3]
Ta Element 4.48 0.09 I yes [2][3]
Tc Element 7.46–11.2 0.04 II yes [2][3]
α-Th Element 1.37 0.013 I yes [2][3]
Ti Element 0.39 0.01 I yes [2][3]
Tl Element 2.39 0.02 I yes [2][3]
α-U Element 0.68 I yes [2][10]
β-U Element 1.8 I yes [10]
V Element 5.03 1 II yes [2][3]
α-W Element 0.015 0.00012 I yes [8][10][14]
β-W Element 1–4 [14]
Zn Element 0.855 0.005 I yes [2][3]
Zr Element 0.55 0.014 I yes [2][3]
Ba8Si46 Compound 8.07 0.008 II yes [15]
C6Ca Compound 11.5 0.95 II [16]
C6Li3Ca2 Compound 11.15 II [16]
C8K Compound 0.14 II [16]
C8KHg Compound 1.4 II [16]
C6K Compound 1.5 II [17]
C3K Compound 3.0 II [17]
C3Li Compound <0.35 II [17]
C2Li Compound 1.9 II [17]
C3Na Compound 2.3–3.8 II [17]
C2Na Compound 5.0 II [17]
C8Rb Compound 0.025 II [16]
C6Sr Compound 1.65 II [16]
C6Yb Compound 6.5 II [16]
C60Cs2Rb Compound 33 II yes [18]
C60K3 Compound 19.8 0.013 II yes [15][19]
C60RbX Compound 28 II yes [20]
FeB4 Compound 2.9 II [21]
InN Compound 3 II yes [22]
In2O3 Compound 3.3 ~3 II yes [23]
LaB6 Compound 0.45 yes [24]
MgB2 Compound 39 74 II yes [25]
Nb3Al Compound 18 II yes [2]
NbC1-xNx Compound 17.8 12 II yes [26][27]
Nb3Ge Compound 23.2 37 II yes [28]
NbO Compound 1.38 II yes [29]
NbN Compound 16 II yes [2]
Nb3Sn Compound 18.3 30 II yes [30]
NbTi Compound 10 15 II yes [2]
SiC:B Compound 1.4 0.008 I yes [31]
SiC:Al Compound 1.5 0.04 II yes [31]
TiN Compound 5.6 5 I yes [32][33][34]
V3Si Compound 17 [35]
YB6 Compound 8.4 II yes [36][37][38]
ZrN Compound 10 yes [39]
ZrB12 Compound 6.0 II yes [38]
YBCO Cuprate 95 120–250 II no
GdBCO Cuprate 91 II no [40]
BSCCO Cuprate 104
HBCCO Cuprate 135
SmFeAs(O,F) Iron-based 55
CeFeAs(O,F) Iron-based 41
LaFeAs(O,F) Iron-based 26
LaFePO Iron-based 4
FeSe Iron-based 65
(Ba,K)Fe2As2 Iron-based 38
NaFeAs Iron-based 20
HgTlBaCaCuO Compound 164 II
H2S @ 155 GPa Compound 203 II
Yb @ >86 GPa Element 1.4 no [41]

Other types

See also

Notes

  1. According to,[4] superconductivity in Bi is not compatible with conventional BCS theory because the Fermi energy of Bi is comparable to the phonon energy (Debye frequency).

References

  1. Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review. 111 (1): 132–142. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132.
  2. Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics. 35 (1): 1–22. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1.
  3. Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics. 26 (3): 277–291. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277.
  4. Prakash, O.; et al. (2017). "Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure". Science. 355 (6320): 52–55. arXiv:1603.04310. Bibcode:2017Sci...355...52P. doi:10.1126/science.aaf8227. PMID 27934703.
  5. Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature. 428 (6982): 542–545. arXiv:cond-mat/0404156. Bibcode:2004Natur.428..542E. doi:10.1038/nature02449. PMID 15057827.
  6. Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials. 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210. PMC 5099641. PMID 27878027.
  7. Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials. 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027.
  8. Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7.
  9. Tuoriniemi, J.; et al. (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. 447 (7141): 187–189. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921.
  10. Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters. 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860.
  11. Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review. 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309.
  12. Buchal, Ch.; et al. (1983). "Superconductivity of Rhodium at Ultralow Temperatures". Phys. Rev. Lett. 50 (1): 64–67. Bibcode:1983PhRvL..50...64B. doi:10.1103/PhysRevLett.50.64.
  13. Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006). "Superconductivity in doped cubic silicon". Nature. 444 (7118): 465–8. Bibcode:2006Natur.444..465B. doi:10.1038/nature05340. PMID 17122852.
  14. Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Applied Superconductivity. 15 (2): 3528. Bibcode:2005ITAS...15.3528L. doi:10.1109/TASC.2005.849033.
  15. Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials. 7: S88–S93. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.04.006.
  16. Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials. 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. PMC 5099629. PMID 27878015.
  17. Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals. 34 (1–3): 455–460. doi:10.1016/0379-6779(89)90424-4.
  18. Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature. 352 (6332): 222. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0.
  19. Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science. 256 (5060): 1190–1. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215.
  20. Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in RbxC60" (PDF). Physical Review Letters. 66 (21): 2830–2832. Bibcode:1991PhRvL..66.2830R. doi:10.1103/PhysRevLett.66.2830. PMID 10043627.
  21. "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11.
  22. Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials. 7: S112–S116. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.06.004.
  23. Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials. 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208. PMC 5099639. PMID 27878025.
  24. Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B. 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589.
  25. Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63–4. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039.
  26. Bernhardt, K.-H. (1975). "Preparation and Superconducting Properties of Niobium Carbonitride Wires" (PDF). Z. Naturforsch. A. 30 (4): 528–532. Bibcode:1975ZNatA..30..528B. doi:10.1515/zna-1975-0422.
  27. Pessall, N.; Jones, C. K.; Johansen, and J. K. Hulm Bernhardt, H. A.; Hulm, J. K. (1965). "Critical Supercurrents in Niobium Carbonitrides". Appl. Phys. Lett. 7 (2): 38–39. Bibcode:1965ApPhL...7...38P. doi:10.1063/1.1754287.
  28. Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics. 34 (5–6): 569. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941.
  29. Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics. 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068.
  30. Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review. 95 (6): 1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435.
  31. Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials. 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204. PMC 5099635. PMID 27878021.
  32. Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5.
  33. Troitskii, V. N.; Marchenko, V. A.; Domashnev, I. A. (1982). "Magnetic properties of titanium nitride in superconducting state". Soviet Physics - Solid State. 24 (4): 689–690.
  34. Pracht, Uwe S.; Scheffler, Marc; Dressel, Martin; Kalok, David F.; Strunk, Christoph; Baturina, Tatyana I. (2012-11-05). "Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy". Physical Review B. 86 (18): 184503. arXiv:1210.6771. Bibcode:2012PhRvB..86r4503P. doi:10.1103/PhysRevB.86.184503.
  35. Tanaka, Shigeki; Handoko; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Böhmer, Anna. E.; Burger, Philipp; Hardy, Frederic; Meingast, Christoph (2012-01-01). "Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure". Journal of the Physical Society of Japan. 81 (Suppl.B): SB026. Bibcode:2012JPSJ...81B..26T. doi:10.1143/JPSJS.81SB.SB026. ISSN 0031-9015.
  36. Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin. 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3.
  37. Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity. 460–462: 626–627. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135.
  38. Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B. 78 (2): 024522. arXiv:0707.2211. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522.
  39. Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis. 15 (6): 377–382. doi:10.1002/sia.740150606.
  40. Shi, Y; Babu, N Hari; Iida, K; Cardwell, D A (2008-02-01). "Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound". Journal of Physics: Conference Series. 97 (1): 012250. Bibcode:2008JPhCS..97a2250S. doi:10.1088/1742-6596/97/1/012250. ISSN 1742-6596.
  41. Song, J; Fabbris, G; Bi, W; Haskel, D; Schilling, J.S. (2018-07-20). "Pressure-Induced Superconductivity in Elemental Ytterbium Metal". Physical Review Letters. 121 (3). doi:10.1103/PhysRevLett.121.037004.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.