List of geodesic polyhedra and Goldberg polyhedra

This is a list of selected geodesic polyhedra and Goldberg polyhedra, two infinite classes of polyhedra. Geodesic polyhedra and Goldberg polyhedra are duals of each other. The geodesic and Goldberg polyhedra are parameterized by integers m and n, with and . T is the triangulation number, which is equal to .

Icosahedral

m n T Class Vertices
(geodesic)
Faces
(Goldberg)
Edges Faces
(geodesic)
Vertices
(Goldberg)
Face
triangle
Geodesic Goldberg
Symbols Conway Image Symbols Conway Image
101I123020{3,5}
{3,5+}1,0
I{5,3}
{5+,3}1,0
GP5(1,0)
D
204I4212080{3,5+}2,0uI
dcdI
{5+,3}2,0
GP5(2,0)
cD
cD
309I92270180{3,5+}3,0xI
ktI
{5+,3}3,0
GP5(3,0)
yD
tkD
4016I162480320{3,5+}4,0uuI
dccD
{5+,3}4,0
GP5(4,0)
c2D
5025I252750500{3,5+}5,0u5I

u5I

{5+,3}5,0
GP5(5,0)
c5D
6036I3621080720{3,5+}6,0uxI
dctkdI
{5+,3}6,0
GP5(6,0)
cyD
ctkD
7049I4921470980{3,5+}7,0vvI
dwrwdI
{5+,3}7,0
GP5(7,0)
wwD
wrwD
8064I64219201280{3,5+}8,0u3I
dcccdI
{5+,3}8,0
GP5(8,0)
cccD
9081I81224301620{3,5+}9,0xxI
ktktI
{5+,3}9,0
GP5(9,0)
yyD
tktkD
100100I100230002000{3,5+}10,0uu5I

uu5I

{5+,3}10,0
GP5(10,0)
cc5D
110121I121236302420{3,5+}11,0u11I

u11I

{5+,3}11,0
GP5(11,0)
c11D
120144I144243202880{3,5+}12,0uuxD
dcctkD
{5+,3}12,0
GP5(12,0)
ccyD
cctkD
130169I169250703380{3,5+}13,0u13I

u13I

{5+,3}13,0
GP5(13,0)
c13D
140196I196258803920{3,5+}14,0uvvI
dcwwdI
{5+,3}14,0
GP5(14,0)
cwrwD
150225I225267504500{3,5+}15,0u5xI
u5ktI
{5+,3}15,0
GP5(15,0)
c5yD
c5tkD
160256I256276805120{3,5+}16,0dc4dI{5+,3}16,0
GP5(16,0)
ccccD
113II329060{3,5+}1,1nI
kD
{5+,3}1,1
GP5(1,1)
yD
ktD
2212II122360240{3,5+}2,2unI
=dctI
{5+,3}2,2
GP5(2,2)
czD
cdkD
3327II272810540{3,5+}3,3xnI
ktkD
{5+,3}3,3
GP5(3,3)
yzD
tkdkD
4448II4821440960{3,5+}4,4u2nI
dcctI
{5+,3}4,4
GP5(4,4)
c2zD
cctI
5575II75222501500{3,5+}5,5u5nI{5+,3}5,5
GP5(5,5)
c5zD
66108II108232402160{3,5+}6,6uxnI
dctktI
{5+,3}6,6
GP5(6,6)
cyzD
ctkdkD
77147II147244102940{3,5+}7,7vvnI
dwrwtI
{5+,3}7,7
GP5(7,7)
wwzD
wrwdkD
88192II192257603840{3,5+}8,8u3nI
dccckD
{5+,3}8,8
GP5(8,8)
c3zD
ccctI
99243II243272904860{3,5+}9,9xxnI
ktktkD
{5+,3}9,9
GP5(9,9)
yyzD
tktktI
1212432II4322129608640{3,5+}12,12uuxnI
dccdktkD
{5+,3}12,12
GP5(12,12)
ccyzD
cckttI
1414588II58821764011760{3,5+}14,14uvvnI
dcwwkD
{5+,3}14,14
GP5(14,14)
cwwzD
cwrwtI
1616768II76822304015360{3,5+}16,16uuuunI
dcccctI
{5+,3}16,16
GP5(16,16)
cccczD
cccctI
217III72210140{3,5+}2,1vI
dwD
{5+,3}2,1
GP5(2,1)
wD
3113III132390260{3,5+}3,1v3,1I{5+,3}3,1
GP5(3,1)
w3,1D
3219III192570380{3,5+}3,2v3I{5+,3}3,2
GP5(3,2)
w3D
4121III212630420{3,5+}4,1dwtI{5+,3}4,1
GP5(4,1)
wkI
4228III282840560{3,5+}4,2vnI
dwtI
{5+,3}4,2
GP5(4,2)
wdkD
4337III3721110740{3,5+}4,3v4I{5+,3}4,3
GP5(4,3)
w4D
5131III312930620{3,5+}5,1u5,1I{5+,3}5,1
GP5(5,1)
w5,1D
5239III3921170780{3,5+}5,2u5,2I{5+,3}5,2
GP5(5,2)
w5,2D
5349III4921470980{3,5+}5,3vvI
dwwD
{5+,3}5,3
GP5(5,3)
wwD
6252III52215601040{3,5+}6,2v3,1uI{5+,3}6,2
GP5(6,2)
w3,1cD
6363III63218901260{3,5+}6,3vxI
dwdktI
{5+,3}6,3
GP5(6,3)
wyD
wtkD
8284III84225201680{3,5+}8,2vunI
dwctI
{5+,3}8,2
GP5(8,2)
wczD
wcdkD
84112III112233602240{3,5+}8,4vuuI
dwccD
{5+,3}8,4
GP5(8,4)
wccD
112147III147244102940{3,5+}11,2vvnI
dwwtI
{5+,3}11,2
GP5(11,2)
wwzD
123189III189256703780{3,5+}12,3vxnI
dwtktktI
{5+,3}12,3
GP5(12,3)
wyzD
wtktI
106196III196258803920{3,5+}10,6vvuI
dwwcD
{5+,3}10,6
GP5(10,6)
wwcD
126252III252275605040{3,5+}12,6vxuI
dwdktcI
{5+,3}12,6
GP5(12,6)
cywD
wctkD
164336III3362100806720{3,5+}16,4vuunI
dwdckD
{5+,3}16,4
GP5(16,4)
wcczD
wcctI
147343III3432102906860{3,5+}14,7vvvI
dwrwwD
{5+,3}14,7
GP5(14,7)
wwwD
wrwwD
159441III4412132308820{3,5+}15,9vvxI
dwwtkD
{5+,3}15,9
GP5(15,9)
wwxD
wwtkD
168448III4482134408960{3,5+}16,8vuuuI
dwcccD
{5+,3}16,8
GP5(16,8)
wcccD
181343III3432102906860{3,5+}18,1vvvI
dwwwD
{5+,3}18,1
GP5(18,1)
wwwD
189567III56721701011340{3,5+}18,9vxxI
dwtktkD
{5+,3}18,9
GP5(18,9)
wyyD
wtktkD
2012784III78422352015680{3,5+}20,12vvuuI
dwwccD
{5+,3}20,12
GP5(20,12)
wwccD
20171029III102923087020580{3,5+}20,17vvvnI
dwwwtI
{5+,3}20,17
GP5(20,17)
wwwzD
wwwdkD
2871029III102923087020580{3,5+}28,7vvvnI
dwrwwdkD
{5+,3}28,7
GP5(28,7)
wwwzD
wrwwdkD

Octahedral

m n T Class Vertices
(geodesic)
Faces
(Goldberg)
Edges Faces
(geodesic)
Vertices
(Goldberg)
Face
triangle
Geodesic Goldberg
Symbols Conway Image Symbols Conway Image
101I6128{3,4}
{3,4+}1,0
O{4,3}
{4+,3}1,0
GP4(1,0)
C
204I184832{3,4+}2,0dcC
dcC
{4+,3}2,0
GP4(2,0)
cC
cC
309I3810872{3,4+}3,0ktO{4+,3}3,0
GP4(3,0)
tkC
4016I66192128{3,4+}4,0uuO
dccC
{4+,3}4,0
GP4(4,0)
ccC
5025I102300200{3,4+}5,0u5O{4+,3}5,0
GP4(5,0)
c5C
6036I146432288{3,4+}6,0uxO
dctkdO
{4+,3}6,0
GP4(6,0)
cyC
ctkC
7049I198588392{3,4+}7,0dwrwO{4+,3}7,0
GP4(7,0)
wrwO
8064I258768512{3,4+}8,0uuuO
dcccC
{4+,3}8,0
GP4(8,0)
cccC
9081I326972648{3,4+}9,0xxO
ktktO
{4+,3}9,0
GP4(9,0)
yyC
tktkC
113II143624{3,4+}1,1kC{4+,3}1,1
GP4(1,1)
tO
2212II5014496{3,4+}2,2ukC
dctO
{4+,3}2,2
GP4(2,2)
czC
ctO
3327II110324216{3,4+}3,3ktkC{4+,3}3,3
GP4(3,3)
tktO
4448II194576384{3,4+}4,4uunO
dcctO
{4+,3}4,4
GP4(4,4)
cczC
cctO
217III308456{3,4+}2,1vO
dwC
{4+,3}2,1
GP4(2,1)
wC

Tetrahedral

m n T Class Vertices
(geodesic)
Faces
(Goldberg)
Edges Faces
(geodesic)
Vertices
(Goldberg)
Face
triangle
Geodesic Goldberg
Symbols Conway Image Symbols Conway Image
101I464{3,3}
{3,3+}1,0
T{3,3}
{3+,3}1,0
GP3(1,0)
T
113II81812{3,3+}1,1kT
kT
{3+,3}1,1
GP3(1,1)
tT
tT
204I102416{3,3+}2,0dcT
dcT
{3+,3}2,0
GP3(2,0)
cT
cT
309I205436{3,3+}3,0ktT{3+,3}3,0
GP3(3,0)
tkT
4016I349664{3,3+}4,0uuT
dccT
{3+,3}4,0
GP3(4,0)
ccT
5025I52150100{3,3+}5,0u5T{3+,3}5,0
GP3(5,0)
c5T
6036I74216144{3,3+}6,0uxT
dctkdT
{3+,3}6,0
GP3(6,0)
cyT
ctkT
7049I100294196{3,3+}7,0vrvT
dwrwT
{3+,3}7,0
GP3(7,0)
wrwT
8064I130384256{3,3+}8,0u3T
dcccdT
{3+,3}8,0
GP3(8,0)
c3T
cccT
9081I164486324{3,3+}9,0xxT
ktktT
{3+,3}9,0
GP3(9,0)
yyT
tktkT
3327II56162108{3,3+}3,3ktkT{3+,3}3,3
GP3(3,3)
tktT
217III164228{3,3+}2,1dwT{3+,3}2,1
GP5(2,1)
wT

References

  • Wenninger, Magnus (1979), Spherical Models, Cambridge University Press, ISBN 978-0-521-29432-4, MR 0552023, archived from the original on July 4, 2008 Reprinted by Dover 1999 ISBN 978-0-486-40921-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.