Kirwan map

In differential geometry, the Kirwan map, introduced by British mathematician Frances Kirwan, is the homomorphism

where

  • is a Hamiltonian G-space; i.e., a symplectic manifold acted by a Lie group G with a moment map .
  • is the equivariant cohomology ring of ; i.e.. the cohomology ring of the homotopy quotient of by .
  • is the symplectic quotient of by at a regular central value of .

It is defined as the map of equivariant cohomology induced by the inclusion followed by the canonical isomorphism .

A theorem of Kirwan[1] says that if is compact, then the map is surjective in rational coefficients. The analogous result holds between the K-theory of the symplectic quotient and the equivariant topological K-theory of .[2]

References

  1. F. C. Kirwan, Cohomology of Quotients in Complex and Algebraic Geometry, Mathematical Notes 31, Princeton University Press, Princeton N. J., 1984.
  2. M. Harada, G. Landweber. Surjectivity for Hamiltonian G-spaces in K-theory. Trans. Amer. Math. Soc. 359 (2007), 6001--6025.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.