KIF3B

Kinesin family member 3B (KIF3B) is a protein that in humans is encoded by the KIF3B gene.[5][6] KIF3B is an N-type protein that complexes with two other kinesin proteins to form two-headed anterograde motors.[7] First, KIF3B forms a heterodimer with KIF3A (kinesin family member 3A; (KIF3A/3B), that is membrane-bound and has ATPase activity. Then KAP3 (kinesin superfamily associated protein–3) binds to the tail domain to form a heterotrimeric motor.[7] This motor has a plus end-directed microtubule sliding activity that exhibits a velocity of ∼0.3 μm/s a.[8] There are 14 kinesin protein families and KIF3B is part of the Kinesin-2 family, of kinesins that can all form heterotrimeric complexes.[9] Expression of the three motor subunits is ubiquitous. The KIG3A/3B/KAP3 motors can transport 90 to 160 nm in diameter organelles.[7]

KIF3B
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKIF3B, FLA8, HH0048, KLP-11, kinesin family member 3B
External IDsOMIM: 603754 MGI: 107688 HomoloGene: 55849 GeneCards: KIF3B
Gene location (Human)
Chr.Chromosome 20 (human)[1]
Band20q11.21Start32,277,651 bp[1]
End32,335,011 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

9371

16569

Ensembl

ENSG00000101350

ENSMUSG00000027475

UniProt

O15066

Q61771

RefSeq (mRNA)

NM_004798

NM_008444

RefSeq (protein)

NP_004789

NP_032470

Location (UCSC)Chr 20: 32.28 – 32.34 MbChr 2: 153.29 – 153.33 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Thjere are many orthologous KIF3B genes that are expressed in Drosophila, the sea urchin, Bos taurus, Canis familiaris, Equus caballus, Felis catus, Macaca mulatta, Mus musculus, Pan troglodytes, and Rattus norvegicus.

Function

The heterotrimeric KIF3B/KIF3A/KAP3 motor machinery functions in the intracellular transport of multiple different molecules such as β-catenin and MT1-MMP.[10][11] KIF3B activity has been implicated with various cellular processes such as intracellular movement of organelles, intra-flagellar transport, chromosome movement during mitosis and meiosis, and cellular interaction with the extracellular matrix.[6][12][13]

KIF3B also regulates the interaction of cancer cells with the extracellular matrix (ECM), in particular the transport of MT1-MMP to the cancer cell front is essential for collagen fiber matrix realignment and degradation.[14][15]

Interactions

KIF3B has been shown to interact with the SMC3 subunit of the cohesin complex and with RAB4A.[16]

Model organisms

Model organisms have been used in the study of KIF3B function. A conditional knockout mouse line called Kif3btm1b(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[17] Male and female animals underwent a standardized phenotypic screen[18] to determine the effects of deletion.[19][20][21][22] Additional screens performed: - In-depth immunological phenotyping[23]

References

  1. GRCh38: Ensembl release 89: ENSG00000101350 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000027475 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, et al. (April 1997). "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Research. 4 (2): 141–50. doi:10.1093/dnares/4.2.141. PMID 9205841.
  6. "Entrez Gene: KIF3B kinesin family member 3B".
  7. Hirokawa N (January 1998). "Kinesin and dynein superfamily proteins and the mechanism of organelle transport". Science. 279 (5350): 519–26. Bibcode:1998Sci...279..519H. doi:10.1126/science.279.5350.519. PMID 9438838.
  8. Hirokawa N (January 1998). "Kinesin and dynein superfamily proteins and the mechanism of organelle transport". Science. 279 (5350): 519–26. Bibcode:1998Sci...279..519H. doi:10.1126/science.279.5350.519. PMID 9438838.
  9. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. (October 2004). "A standardized kinesin nomenclature". The Journal of Cell Biology. 167 (1): 19–22. doi:10.1083/jcb.200408113. PMC 2041940. PMID 15479732.
  10. Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K, Akiyama T (April 2002). "Identification of a link between the tumour suppressor APC and the kinesin superfamily". Nature Cell Biology. 4 (4): 323–7. doi:10.1038/ncb779. PMID 11912492. S2CID 10745049.
  11. Wiesner C, Faix J, Himmel M, Bentzien F, Linder S (September 2010). "KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages". Blood. 116 (9): 1559–69. doi:10.1182/blood-2009-12-257089. PMID 20505159.
  12. Scholey JM (April 1996). "Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles". The Journal of Cell Biology. 133 (1): 1–4. doi:10.1083/jcb.133.1.1. PMC 2120781. PMID 8601599.
  13. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. (October 2004). "A standardized kinesin nomenclature". The Journal of Cell Biology. 167 (1): 19–22. doi:10.1083/jcb.200408113. PMC 2041940. PMID 15479732.
  14. Kravtsov O, Hartley CP, Compérat EM, Iczkowski KA (2019). "KIF3B protein expression loss correlates with metastatic ability of prostate cancer". American Journal of Clinical and Experimental Urology. 7 (3): 178–181. PMC 6627541. PMID 31317057.
  15. Stoletov K, Willetts L, Paproski RJ, Bond DJ, Raha S, Jovel J, et al. (June 2018). "Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis". Nature Communications. 9 (1): 2343. Bibcode:2018NatCo...9.2343S. doi:10.1038/s41467-018-04743-2. PMC 6002534. PMID 29904055.
  16. Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM (July 2003). "Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin". Molecular and Cellular Biology. 23 (14): 4892–900. doi:10.1128/MCB.23.14.4892-4900.2003. PMC 162221. PMID 12832475.
  17. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  18. "International Mouse Phenotyping Consortium".
  19. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  20. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  21. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  22. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. (July 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  23. "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.