Donor number

In chemistry a donor number (DN) is a quantitative measure of Lewis basicity. A donor number is defined as the negative enthalpy value for the 1:1 adduct formation between a Lewis base and the standard Lewis acid SbCl5 (antimony pentachloride), in dilute solution in the noncoordinating solvent 1,2-dichloroethane with a zero DN. The units are kilocalories per mole for historical reasons.[1] The donor number is a measure of the ability of a solvent to solvate cations and Lewis acids. The method was developed by V. Gutmann in 1976.[2] Likewise Lewis acids are characterized by acceptor numbers (AN, see Gutmann–Beckett method).

Typical solvent values are:[3]

The donor number of a solvent can be measured via calorimetry, although it is frequently measured with nuclear magnetic resonance (NMR) spectroscopy using assumptions on complexation.[4] A critical review of the donor number concept has pointed out the serious limitations of this affinity scale.[5] Furthermore, it has been shown that to define the order of Lewis base strength (or Lewis acid strength) at least two properties must be considered.[6] For Pearson qualitative HSAB theory, the two properties are hardness and strength,[7] while for Drago’s quantitative ECW model, the two properties are electrostatic and covalent.[8]

References

  1. Françoise Arnaud-neu; Rita Delgado; Sílvia Chaves (2003). "Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers". Pure Appl. Chem. 75 (1): 71–102. doi:10.1351/pac200375010071.
  2. V. Gutmann (1976). "Solvent effects on the reactivities of organometallic compounds". Coord. Chem. Rev. 18 (2): 225–255. doi:10.1016/S0010-8545(00)82045-7.
  3. D.T. Sawyer, J.L. Roberts (1974). Experimental Electrochemistry for Chemists. John Wiley & Sons, Inc.
  4. KATAYAMA, Misaki; SHINODA, Mitsushi; OZUTSUMI, Kazuhiko; FUNAHASHI, Shigenobu; INADA, Yasuhiro (2012). "Reevaluation of Donor Number Using Titration Calorimetry". Analytical Sciences. 28 (2): 103. doi:10.2116/analsci.28.103. ISSN 0910-6340.
  5. Laurence, C. and Gal, J-F. Lewis Basicity and Affinity Scales, Data and Measurement, (Wiley 2010) p 51 IBSN 978-0-470-74957-9
  6. Cramer, R. E., and Bopp, T. T. (1977) Great E and C plot. Graphical display of the enthalpies of adduct formation for Lewis acids and bases. Journal of Chemical Education 54 612–613
  7. Pearson, Ralph G. (1968). "Hard and soft acids and bases, HSAB, part 1: Fundamental principles". J. Chem. Educ. 1968 (45): 581–586. Bibcode:1968JChEd..45..581P. doi:10.1021/ed045p581.
  8. Vogel G. C.;Drago, R. S. (1996). "The ECW Model". Journal of Chemical Education. 73 (8): 701–707. Bibcode:1996JChEd..73..701V. doi:10.1021/ed073p701.CS1 maint: uses authors parameter (link)

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.