Dold–Thom theorem

In algebraic topology, the Dold–Thom theorem, proved by Albrecht Dold and René Thom (1956, 1958), states that the homotopy group πi(SP(X)) of the infinite symmetric product SP(X) of a connected CW complex X is the i-th singular reduced homology group of X, usually denoted by .[1]

References

  • Dold, Albrecht; Thom, René (1956), "Une généralisation de la notion d'espace fibré. Application aux produits symétriques infinis", Les Comptes rendus de l'Académie des sciences, 242: 1680–1682, MR 0077121
  • Dold, Albrecht; Thom, René (1958), "Quasifaserungen und unendliche symmetrische Produkte", Annals of Mathematics, Second Series, 67: 239–281, doi:10.2307/1970005, ISSN 0003-486X, JSTOR 1970005, MR 0097062
Specific
  1. "Dold-Thom theorem in nLab". ncatlab.org. Retrieved 2017-08-23.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.