Discrete Morse theory
Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces,[1] homology computation,[2][3] denoising,[4] mesh compression,[5] and topological data analysis.[6]
Notation regarding CW complexes
Let be a CW complex and denote by its set of cells. Define the incidence function in the following way: given two cells and in , let be the degree of the attaching map from the boundary of to . The boundary operator is the endomorphism of the free abelian group generated by defined by
It is a defining property of boundary operators that . In more axiomatic definitions[7] one can find the requirement that
which is a consequence of the above definition of the boundary operator and the requirement that .
Discrete Morse functions
A real-valued function is a discrete Morse function if it satisfies the following two properties:
- For any cell , the number of cells in the boundary of which satisfy is at most one.
- For any cell , the number of cells containing in their boundary which satisfy is at most one.
It can be shown[8] that the cardinalities in the two conditions cannot both be one simultaneously for a fixed cell , provided that is a regular CW complex. In this case, each cell can be paired with at most one exceptional cell : either a boundary cell with larger value, or a co-boundary cell with smaller value. The cells which have no pairs, i.e., whose function values are strictly higher than their boundary cells and strictly lower than their co-boundary cells are called critical cells. Thus, a discrete Morse function partitions the CW complex into three distinct cell collections: , where:
- denotes the critical cells which are unpaired,
- denotes cells which are paired with boundary cells, and
- denotes cells which are paired with co-boundary cells.
By construction, there is a bijection of sets between -dimensional cells in and the -dimensional cells in , which can be denoted by for each natural number . It is an additional technical requirement that for each , the degree of the attaching map from the boundary of to its paired cell is a unit in the underlying ring of . For instance, over the integers , the only allowed values are . This technical requirement is guaranteed, for instance, when one assumes that is a regular CW complex over .
The fundamental result of discrete Morse theory establishes that the CW complex is isomorphic on the level of homology to a new complex consisting of only the critical cells. The paired cells in and describe gradient paths between adjacent critical cells which can be used to obtain the boundary operator on . Some details of this construction are provided in the next section.
The Morse complex
A gradient path is a sequence of paired cells
satisfying and . The index of this gradient path is defined to be the integer
- .
The division here makes sense because the incidence between paired cells must be . Note that by construction, the values of the discrete Morse function must decrease across . The path is said to connect two critical cells if . This relationship may be expressed as . The multiplicity of this connection is defined to be the integer . Finally, the Morse boundary operator on the critical cells is defined by
where the sum is taken over all gradient path connections from to .
Basic Results
Many of the familiar results from continuous Morse theory apply in the discrete setting.
The Morse Inequalities
Let be a Morse complex associated to the CW complex . The number of -cells in is called the Morse number. Let denote the Betti number of . Then, for any , the following inequalities[9] hold
- , and
Moreover, the Euler characteristic of satisfies
Discrete Morse Homology and Homotopy Type
Let be a regular CW complex with boundary operator and a discrete Morse function . Let be the associated Morse complex with Morse boundary operator . Then, there is an isomorphism[10] of homology groups
and similarly for the homotopy groups.
See also
References
- Mori, Francesca; Salvetti, Mario (2011), "(Discrete) Morse theory for Configuration spaces" (PDF), Mathematical Research Letters, 18 (1): 39–57, doi:10.4310/MRL.2011.v18.n1.a4, MR 2770581
- Perseus: the Persistent Homology software.
- Mischaikow, Konstantin; Nanda, Vidit (2013). "Morse Theory for Filtrations and Efficient computation of Persistent Homology". Discrete & Computational Geometry. 50 (2): 330–353. doi:10.1007/s00454-013-9529-6.
- U. Bauer, C. Lange, and M. Wardetzky: Optimal Topological Simplification of Discrete Functions on Surfaces
- T Lewiner, H Lopez and G Tavares: Applications of Forman's discrete Morse theory to topological visualization and mesh compression Archived 2012-04-26 at the Wayback Machine
- "the Topology ToolKit".
- Mischaikow, Konstantin; Nanda, Vidit (2013). "Morse Theory for Filtrations and Efficient computation of Persistent Homology". Discrete & Computational Geometry. 50 (2): 330–353. doi:10.1007/s00454-013-9529-6.
- Forman, Robin: Morse Theory for Cell Complexes Archived April 24, 2012, at the Wayback Machine, Lemma 2.5
- Forman, Robin: Morse Theory for Cell Complexes Archived April 24, 2012, at the Wayback Machine, Corollaries 3.5 and 3.6
- Forman, Robin: Morse Theory for Cell Complexes Archived April 24, 2012, at the Wayback Machine, Theorem 7.3
- Forman, Robin (2002). "A user's guide to discrete Morse theory" (PDF). Séminaire Lotharingien de Combinatoire. 48: Art. B48c, 35 pp. MR 1939695.
- Kozlov, Dmitry (2007). Combinatorial algebraic topology. Algorithms and Computation in Mathematics. 21. Berlin: Springer. ISBN 978-3540719618. MR 2361455.
- Jonsson, Jakob (2007). Simplicial complexes of graphs. Springer. ISBN 978-3540758587.
- Orlik, Peter; Welker, Volkmar (2007). Algebraic Combinatorics: Lectures at a Summer School In Nordfjordeid. Universitext. Springer. doi:10.1007/978-3-540-68376-6. ISBN 978-3540683759. MR 2322081.
- "Discrete Morse theory". nLab.