Bicorn

In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation

[1]
Bicorn

It has two cusps and is symmetric about the y-axis.[2]

History

In 1864, James Joseph Sylvester studied the curve

in connection with the classification of quintic equations; he named the curve a bicorn because it has two cusps. This curve was further studied by Arthur Cayley in 1867.[3]

Properties

A transformed bicorn with a = 1

The bicorn is a plane algebraic curve of degree four and genus zero. It has two cusp singularities in the real plane, and a double point in the complex projective plane at x=0, z=0 . If we move x=0 and z=0 to the origin substituting and perform an imaginary rotation on x bu substituting ix/z for x and 1/z for y in the bicorn curve, we obtain

This curve, a limaçon, has an ordinary double point at the origin, and two nodes in the complex plane, at x = ± i and z=1.[4]

The parametric equations of a bicorn curve are:

and with

See also


References

  1. Lawrence, J. Dennis (1972). A catalog of special plane curves. Dover Publications. pp. 147–149. ISBN 0-486-60288-5.
  2. "Bicorn". mathcurve.
  3. The Collected Mathematical Papers of James Joseph Sylvester. II. Cambridge: Cambridge University press. 1908. p. 468.
  4. "Bicorn". The MacTutor History of Mathematics.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.