2018 Challenger La Manche – Singles

Mathias Bourgue was the defending champion but lost in the second round to Constant Lestienne.

Singles
2018 Challenger La Manche
Champion Maximilian Marterer
Runner-up Constant Lestienne
Final score6–4, 7–5

Maximilian Marterer won the title after defeating Lestienne 6–4, 7–5 in the final.

Seeds

  1. Gilles Simon (Second round)
  2. Maximilian Marterer (Champion)
  3. Malek Jaziri (Second round)
  4. Matteo Berrettini (Semifinals)
  5. Oscar Otte (Second round)
  6. Norbert Gombos (First round)
  7. Kenny de Schepper (Quarterfinals)
  8. Calvin Hemery (First round)

Draw

Key

Finals

Semifinals Final
          
Mats Moraing 3 4
WC Constant Lestienne 6 6
WC Constant Lestienne 4 5
2 Maximilian Marterer 6 7
4 Matteo Berrettini 4 67
2 Maximilian Marterer 6 79

Top half

First Round Second Round Quarterfinals Semifinals
1 G Simon 6 77
B Bonzi 4 65 1 G Simon 4 4
G Oliveira 5 62 M Moraing 6 6
M Moraing 7 77 M Moraing 6 6
WC A Hoang 6 4 67 Q M Ymer 2 2
Q M Ymer 3 6 79 Q M Ymer 6 6
G Sakharov 6 6 G Sakharov 4 4
8 C Hemery 2 1 M Moraing 3 4
3/Alt M Jaziri 6 6 WC C Lestienne 6 6
WC G Blancaneaux 4 4 3/Alt M Jaziri 68 2
T Kamke 77 6 T Kamke 710 6
V Šafránek 61 4 T Kamke 3 6 3
WC C Lestienne 6 6 WC C Lestienne 6 4 6
D Novak 1 2 WC C Lestienne 6 1 6
M Bourgue 6 6 M Bourgue 2 6 3
6 N Gombos 3 4

Bottom half

First Round Second Round Quarterfinals Semifinals
7 K de Schepper 6 3 6
WC C Denolly 3 6 4 7 K de Schepper w/o
C Taberner 1 1 A Vatutin
A Vatutin 6 6 7 K de Schepper 4 5
A Pavlásek 6 2 6 4 M Berrettini 6 7
Q R Boutillier 4 6 4 A Pavlásek 3 63
LL Maxime Tabatruong 77 5 4 4 M Berrettini 6 77
4 M Berrettini 63 7 6 4 M Berrettini 4 67
5 O Otte 6 6 2 M Marterer 6 79
Q J Clarke 2 2 5 O Otte 4 6 3
K Majchrzak 3 1r Q A Popyrin 6 3 6
Q A Popyrin 6 2 Q A Popyrin 2 4
T Brkić 62 2 2 M Marterer 6 6
L Vanni 77 6 L Vanni 4 3
J Munar 3 64 2 M Marterer 6 6
2 M Marterer 6 77

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.