107 Camilla

Camilla (minor planet designation: 107 Camilla) is one of the largest asteroids from the outermost edge of the asteroid belt, approximately 220 kilometers (140 miles). It is a member of the Sylvia family and located within the Cybele group. It was discovered on 17 November 1868, by English astronomer Norman Pogson at Madras Observatory, India, and named after Camilla, Queen of the Volsci in Roman mythology.[4][2] The X-type asteroid is a rare trinary asteroid with two minor-planet moons discovered in 2001 and 2016, respectively. It is elongated in shape and has a short rotation period of 4.8 hours.[17]

107 Camilla
Lightcurve-based 3-D model of Camilla
Discovery[1][2]
Discovered byN. R. Pogson
Discovery siteMadras Obs.
Discovery date17 November 1868
Designations
(107) Camilla
Pronunciation/kəˈmɪlə/[3]
Named after
Camilla (Roman mythology)[4]
1938 OG · 1949 HD1
A893 QA
main-belt · (outer)[1]
Sylvia · Cybele
AdjectivesCamillian or Camillean, /kəˈmɪliən/
Orbital characteristics[1]
Epoch 23 March 2018 (JD 2458200.5)
Uncertainty parameter 0
Observation arc149.17 yr (54,485 d)
Aphelion3.7202 AU
Perihelion3.2622 AU
3.4912 AU
Eccentricity0.0656
6.52 yr (2,383 d)
265.91°
0° 9m 3.96s / day
Inclination10.001°
172.61°
306.77°
Known satellites2[5][6][7]
Physical characteristics
Dimensions285 km × 205 km × 170 km[8]
344 km × 246 km × 205 km[9]
Mean diameter
200.37±3.51 km[10]
210.370±8.326 km[11]
222.62±17.1 km[12]
241.6±35.0 km[13]
243.3±12.4 km[14]
Mass1.12×1019 kg[9]
Mean density
1.40±0.30 g/cm3[9]
4.844 h[15][16][lower-alpha 1]
0.043±0.012[14]
0.045±0.019[13]
0.0525±0.009[12]
0.059±0.012[11]
0.065±0.003[10]
X (SMASS)[1][17]
C (Tholen)
P (WISE)[18]
B–V = 0.705[1]
U–B = 0.298[1]
11.53[19]
7.08[1][10][12][13][14][18]
7.1±0.02[17][20][15]

    Physical characteristics

    Camilla has a very dark surface and primitive carbonaceous composition.

    A large number of rotational lightcurves of have been obtained from photometric observations since the 1980s.[21][22][23][24][25][26][27][28][29] Best rated results gave a short rotation period of 4.844 hours with a brightness amplitude between 0.32 and 0.53 magnitude.[15][16][lower-alpha 1]

    Lightcurve analysis indicates that Camilla's pole most likely points towards ecliptic coordinates (β, λ) = (+51°, 72°) with a 10° uncertainty,[8] which gives it an axial tilt of 29°. Follow-up modeling of photometric data gave similar results.[30][31][32]

    Diameter and albedo

    10µ radiometric data collected from Kitt Peak in 1975 gave a first diameter estimate of 209 km.[33] According to the space-based surveys carried out by the Japanese Akari satellite, the Infrared Astronomical Satellite IRAS and the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer,[10][11][12][18][20] as well as observations by the Keck Observatory and photometric modeling,[13][14][34][30][31][35][36] Camilla measures between 185 and 247 kilometers in diameter and its surface has an albedo between 0.160 and 0.294.[17]

    Satellites

    Camilla is the 6th trinary asteroid that has been discovered in the asteroid belt, after 87 Sylvia, 45 Eugenia, 216 Kleopatra, 93 Minerva and 130 Elektra.

    First satellite

    On 1 March 2001, a minor-planet moon of Camilla was found by A. Storrs, F. Vilas, R. Landis, E. Wells, C. Woods, B. Zellner, and M. Gaffey using the Hubble Space Telescope.[6] It has been designated S/2001 (107) 1 but has not yet received an official name.

    Later observations in September 2005 with the Very Large Telescope (VLT) allowed the determination of an orbit. Apart from data in infobox, the inclination was found to be 3 ± 1° with respect to an axis pointing towards (β, λ) = (+55°, 75°). Given the ~10° uncertainty in the actual rotational axis of Camilla, one can say that the orbit's inclination is less than 10°.

    The satellite is estimated to measure about 11 km in diameter.[34] Assuming a similar density to the primary, this would give it an approximate mass of ~1.5×1015 kg. It has a similar colour to the primary.[6]

    Second satellite

    In 2016, the discovery of a second satellite of Camilla was reported by astronomers at Cerro Paranal's Very Large Telescope in Chile. It has the provisional designation S/2016 (107) 1.[7]

    Observations were taken between 29 May 2015 and 30 July 2016, using the VLT-SPHERE, the principal instrument attached to the 8-meter "Melipal" (UT3) unit of the VLT. On 3 out of 5 observation sessions, the new satellite could be detected.[7] The body's orbit has a semi-major axis of 340 kilometers.[5]

    The "Johnstonsarchive" estimates an orbital period of 12 hours, and derives a diameter for the second satellite of 3.5±0.5 kilometers with a tertiary-to-primary mean-diameter ratio of 0.016±0.002.[5]

    S/2001 (107) 1
    Discovery[6]
    Discovered byA. Storrs, F. Vilas,
    R. Landis, E. Wells,
    C. Woods, B. Zellner,
    and M. Gaffey
    Discovery date1 March 2001
    Orbital characteristics[34]
    1235 ± 16 km
    Eccentricity0.006 ± 0.002
    3.710 ± 0.001 d
    24.2 m/s
    Inclination< 10°
    Satellite of107 Camilla
    Physical characteristics
    Dimensions~ 11 ± 2 km[34]
    Mass~1.5×1015 kg[37]
    Equatorial escape velocity
    ~ 6 m/s
    13.18[34]

      Notes

      1. Pietschnig (2011) web: Photometric observations from 28 March 2007. Rotation period 4.844±0.003 hours with a brightness amplitude of 0.47 magnitude. Quality code of 3. Summary figures at Collaborative Asteroid Lightcurve Link (CALL)

      References

      1. "JPL Small-Body Database Browser: 107 Camilla" (2018-02-07 last obs.). Jet Propulsion Laboratory. Retrieved 7 July 2018.
      2. "107 Camilla". Minor Planet Center. Retrieved 7 July 2018.
      3. Noah Webster (1884) A Practical Dictionary of the English Language
      4. Schmadel, Lutz D. (2007). "(107) Camilla". Dictionary of Minor Planet Names – (107) Camilla. Springer Berlin Heidelberg. p. 25. doi:10.1007/978-3-540-29925-7_108. ISBN 978-3-540-00238-3.
      5. Johnston, Robert (23 June 2015). "(107) Camilla, S/2001 (107) 1, and S/2016 (107) 1". johnstonsarchive.net. Retrieved 30 March 2017.
      6. IAUC 7599
      7. Marsset, M.; Carry, B.; Yang, B.; Marchis, F.; Vernazza, P.; Dumas, C.; et al. (August 2016). "S/2016 (107) 1". IAU Circ. 9282: 1. Bibcode:2016IAUC.9282....1M. Retrieved 30 March 2017.
      8. Torppa, Johanna; Kaasalainen, Mikko; Michalowski, Tadeusz; Kwiatkowski, Tomasz; Kryszczynska, Agnieszka; Denchev, Peter; et al. (August 2003). "Shapes and rotational properties of thirty asteroids from photometric data". Icarus. 164 (2): 346–383. Bibcode:2003Icar..164..346T. doi:10.1016/S0019-1035(03)00146-5. Retrieved 30 March 2017.
      9. Jim Baer (2008). "Recent Asteroid Mass Determinations". Personal Website. Archived from the original on 8 July 2013. Retrieved 5 December 2008.
      10. Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan. 63 (5): 1117–1138. Bibcode:2011PASJ...63.1117U. doi:10.1093/pasj/63.5.1117. Retrieved 15 June 2018. (online, AcuA catalog p. 153)
      11. Masiero, Joseph R.; Grav, T.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; et al. (August 2014). "Main-belt Asteroids with WISE/NEOWISE: Near-infrared Albedos". The Astrophysical Journal. 791 (2): 11. arXiv:1406.6645. Bibcode:2014ApJ...791..121M. doi:10.1088/0004-637X/791/2/121. Retrieved 30 March 2017.
      12. Tedesco, E. F.; Noah, P. V.; Noah, M.; Price, S. D. (October 2004). "IRAS Minor Planet Survey V6.0". NASA Planetary Data System – IRAS-A-FPA-3-RDR-IMPS-V6.0: IRAS-A-FPA-3-RDR-IMPS-V6.0. Bibcode:2004PDSS...12.....T. Retrieved 7 July 2018.
      13. Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; et al. (November 2012). "Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations". Icarus. 221 (2): 1130–1161. arXiv:1604.05384. Bibcode:2012Icar..221.1130M. doi:10.1016/j.icarus.2012.09.013. Retrieved 30 March 2017.
      14. Hargrove, Kelsey D.; Kelley, Michael S.; Campins, Humberto; Licandro, Javier; Emery, Josh (September 2012). "Asteroids (65) Cybele, (107) Camilla and (121) Hermione: Infrared spectral diversity among the Cybeles". Icarus. 221 (1): 453–455. Bibcode:2012Icar..221..453H. doi:10.1016/j.icarus.2012.07.013. Retrieved 30 March 2017.
      15. Harris, A. W.; Young, J. W. (October 1989). "Asteroid lightcurve observations from 1979-1981". Icarus. 81 (2): 314–364. Bibcode:1989Icar...81..314H. doi:10.1016/0019-1035(89)90056-0. ISSN 0019-1035. Retrieved 30 March 2017.
      16. Polishook, David (July 2009). "Lightcurves for Shape Modeling Obtained at the Wise Observatory". The Minor Planet Bulletin. 36 (3): 119–120. Bibcode:2009MPBu...36..119P. ISSN 1052-8091. Retrieved 30 March 2017.
      17. "LCDB Data for (107) Camilla". Asteroid Lightcurve Database (LCDB). Retrieved 30 March 2017.
      18. Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D.; et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal. 741 (2): 25. arXiv:1109.6407. Bibcode:2011ApJ...741...90M. doi:10.1088/0004-637X/741/2/90.
      19. "AstDys (107) Camilla Ephemerides". Department of Mathematics, University of Pisa, Italy. Retrieved 28 June 2010.
      20. Pravec, Petr; Harris, Alan W.; Kusnirák, Peter; Galád, Adrián; Hornoch, Kamil (September 2012). "Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations". Icarus. 221 (1): 365–387. Bibcode:2012Icar..221..365P. doi:10.1016/j.icarus.2012.07.026. Retrieved 30 March 2017.
      21. Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.; Greenberg, R.; Levy, D. H.; Vail, S. (May 1987). "Photometric geodesy of main-belt asteroids. I - Lightcurves of 26 large, rapid rotators". Icarus. 70 (2): 191–245. Bibcode:1987Icar...70..191W. doi:10.1016/0019-1035(87)90131-X. ISSN 0019-1035. Retrieved 30 March 2017.
      22. Behrend, Raoul. "Asteroids and comets rotation curves – (107) Camilla". Geneva Observatory. Retrieved 30 March 2017.
      23. Svoren, J.; Babiakova, U. (September 2002). "CCD-photometry of asteroid 107 Camilla". In Memorie della Società' Astronomica Italiana. 73 (3): 726. Bibcode:2002MmSAI..73..726S. Retrieved 30 March 2017.
      24. Drummond, J. D.; Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R. (October 1988). "Photometric geodesy of main-belt asteroids. II - Analysis of lightcurves for poles, periods, and shapes". Icarus. 76 (1): 19–77. Bibcode:1988Icar...76...19D. doi:10.1016/0019-1035(88)90139-X. ISSN 0019-1035. Retrieved 30 March 2017.
      25. Magnusson, P. (May 1990). "Spin vectors of 22 large asteroids". Icarus. 85 (1): 229–240. Bibcode:1990Icar...85..229M. doi:10.1016/0019-1035(90)90113-N. ISSN 0019-1035. Retrieved 30 March 2017.
      26. Drummond, J. D.; Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R. (January 1991). "Photometric geodesy of main-belt asteroids. IV - an updated analysis of lightcurves for poles, periods, and shapes". Icarus. 89 (1): 44–64. Bibcode:1991Icar...89...44D. doi:10.1016/0019-1035(91)90086-9. ISSN 0019-1035. Retrieved 30 March 2017.
      27. De Angelis, G. (May 1995). "Asteroid spin, pole and shape determinations". Planetary and Space Science. 43 (5): 649–682. Bibcode:1995P&SS...43..649D. doi:10.1016/0032-0633(94)00151-G. Retrieved 30 March 2017.
      28. Tanigawa, Takumi; Omae, Yuya; Ebisu, Daichi; Mawano, Mika; Kanda, Tomoya; Takano, Tomoki; et al. (October 2015). "The Lightcurve for Asteroid 107 Camilla". The Minor Planet Bulletin. 42 (4): 248. Bibcode:2015MPBu...42..248T. ISSN 1052-8091. Retrieved 30 March 2017.
      29. di Martino, M.; Zappala, V.; de Campos, J. A.; Debehogne, H.; Lagerkvist, C.-I. (January 1987). "Rotational properties and lightcurves of the minor planets 94, 107, 197, 201, 360, 451, 511 and 702". Astronomy and Astrophysics Supplement Series. 67 (1): 95–101. Bibcode:1987A&AS...67...95D. ISSN 0365-0138. Retrieved 30 March 2017.
      30. Durech, Josef; Kaasalainen, Mikko; Herald, David; Dunham, David; Timerson, Brad; Hanus, Josef; et al. (August 2011). "Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes". Icarus. 214 (2): 652–670. arXiv:1104.4227. Bibcode:2011Icar..214..652D. doi:10.1016/j.icarus.2011.03.016. Retrieved 30 March 2017.
      31. Hanus, J.; Marchis, F.; Durech, J. (September 2013). "Sizes of main-belt asteroids by combining shape models and Keck adaptive optics observations". Icarus. 226 (1): 1045–1057. arXiv:1308.0446. Bibcode:2013Icar..226.1045H. doi:10.1016/j.icarus.2013.07.023. Retrieved 30 March 2017.
      32. Hanus, J.; Durech, J.; Oszkiewicz, D. A.; Behrend, R.; Carry, B.; Delbo, M.; et al. (February 2016). "New and updated convex shape models of asteroids based on optical data from a large collaboration network". Astronomy and Astrophysics. 586: 24. arXiv:1510.07422. Bibcode:2016A&A...586A.108H. doi:10.1051/0004-6361/201527441.
      33. Morrison, D.; Chapman, C. R. (March 1976). "Radiometric diameters for an additional 22 asteroids". Astrophysical Journal. 204: 934–939. Bibcode:1976ApJ...204..934M. doi:10.1086/154242. Retrieved 31 March 2017.
      34. Marchis, F.; Kaasalainen, M.; Hom, E. F. Y.; Berthier, J.; Enriquez, J.; Hestroffer, D.; et al. (November 2006). "Shape, size and multiplicity of main-belt asteroids. I. Keck Adaptive Optics survey". Icarus. 185 (1): 39–63. Bibcode:2006Icar..185...39M. doi:10.1016/j.icarus.2006.06.001. PMC 2600456. PMID 19081813. Retrieved 30 March 2017.
      35. Marchis, F.; Descamps, P.; Baek, M.; Harris, A. W.; Kaasalainen, M.; Berthier, J.; et al. (July 2008). "Main belt binary asteroidal systems with circular mutual orbits". Icarus. 196 (1): 97–118. arXiv:0804.1383. Bibcode:2008Icar..196...97M. doi:10.1016/j.icarus.2008.03.007. Retrieved 30 March 2017.
      36. Hargrove, K. D.; Campins, H.; Kelley, M. (October 2011). "Progress Report on Study of Cybele Group Asteroids". EPSC-DPS Joint Meeting 2011. 2011: 1657. Bibcode:2011epsc.conf.1657H. Retrieved 30 March 2017.
      37. Assuming a similar density to the primary.

      This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.